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Abstract

Facial expressions are a fundamental part of human communication used to convey non-
verbal cues during interaction with other people. Humans are adept at reading these cues,
although they are difficult to capture with traditional camera-based methods. Analysis
of these expressions is an increasingly important field with applications in psychology,
animation, medicine, and security.

Recent advancements in the field of image registration have opened up opportunities for
improvement in the modelling of facial expressions. A two-camera stereoscope was designed
and constructed. The stereoscope is capable of capturing time-synchronous photographs of
a subject transitioning from a neutral face to an expression. Stereo reconstruction was then
used to estimate the 3D geometry of the neutral face, and individual pixels were tracked
throughout the expression to produce point clouds with point-to-point correspondence.

This process was able to be applied to a simplified case of tracking rigid body motion
on a highly textured rock, however, difficulties arose when applying tracking to facial
expressions. It is suspected this is due to a lack of texture captured with the current
setup. A principle component analysis pipeline was also developed which has the potential
to extract dominant modes of deformations from expressions once accurate models are
produced with point-to-point correspondence.
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1 Introduction

Humans are capable of reading peoples’ emotions by analysing facial expressions. However, some
of these expressions are difficult to capture with traditional camera-based systems. The Auckland
Bioengineering Institute (ABI) are world leaders in the fields of image registration and tracking
and have developed a new method of image registration with subpixel accuracy [1]. Consequently,
there is opportunity for the methods behind expression representation to be improved by using
the latest techniques and technology.

This project aimed to develop a framework for reconstructing faces using a two-camera stereoscope,
and evaluate the feasibility of applying the recently developed image registration algorithms for
tracking skin during expressions. The project consisted of three stages.

The first stage was done in conjunction with my project partner, Gary Qian, and required
designing and constructing a stereoscope. The stereoscope was then used to capture time-
synchronous images of an individual forming expressions.

The second stage of the project was done independently, and involved reconstructing a 3D point
cloud of the individual’s neutral expression, and tracking skin during the expression to create
subsequent point clouds with point-to-point correspondence. An overview diagram for this stage
of the project is shown in Figure 1.1, which shows the stereo images through time, with tracking
performed on sequential frames to maintain point to point correspondence of the point clouds
reproduced.

Finally, combining the methods developed in our independent projects, we used principal
component analysis (PCA) to demonstrate its potential to determine the dominant modes of
deformation during expressions, and to represent facial expressions efficiently.

Figure 1.1: Project overview diagram
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2 Literature Survey

2.1 Introduction

Facial expression analysis is a growing field of research, with many applications in psychology,
animation, medicine, and security. It is therefore a heavily researched area, and the methods
used for analysis are frequently improving [2].

This survey will summarise the methods used in literature for creating a 3D point clouds with
point-to-point correspondence from video of a subject, the methods of constructing smooth
surfaces from point clouds, and finally, techniques for reducing the parameters needed for
representing 3D models.

2.2 3D Model Estimation

2.2.1 Structured Light

One of the common methods used in literature are structured light techniques [3]. By projecting
an encoded light pattern onto the face of a subject (example shown in Figure 2.1) and measuring
the shape of the pattern, a geometry can be estimated.

Figure 2.1: Illustration of structured light. (a) The light pattern to be projected. (b) The
projection onto a subjects face. Images from [4]

These methods have been adapted to flash between patterned and white light to allow for colour
film to be recorded at the same time, or to project infrared light outside the visible spectrum to
avoid distracting the subject.

The disadvantages of this method include:

• Rendering of light patterns can slow the capture rate—though some high-speed systems
have been proposed which address this [5].

• The subject is limited to movements within the light pattern.

• Parts of the face not covered by structured light lead to holes in the model.
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2.2.2 Photometric

Photometric methods were first proposed in 1980 [6], but are still commonly discussed in literature.
The premise of these methods is to illuminate the subject from different angles and capture
images. These images can then be used to estimate the surface normals of the subject’s face by
inspecting the observed shadows. Integration must be performed to obtain a surface mesh from
the normals, which results in extra computational time and potential errors [7]. Another clear
disadvantage of this method is that the subject must remain still while the lighting conditions
are adjusted. This has been addressed in [8] by illuminating the subject with different colours
from different angles. However, this method requires laborious calibration, and the coloured
lights can distract the subject.

2.2.3 Stereo-Cameras

Stereo-camera systems can synchronously capture a scene from multiple angles. Points of
correspondence in the scene can then be found in features of the images and used to reconstruct a
point cloud [9]. This method allows the subject to behave more naturally, and the images can be
applied to the 3D model as texture maps. Although, this requires the use of image registration
algorithms (see Section 2.2.3) [1, 10, 11], as well as calibration of intrinsic (those relating an
object to its image in the camera image plane) camera parameters and extrinsic (those relating
the cameras in a global coordinate system) camera parameters. The calibration must also be
done offline as this process is computationally expensive, with current algorithms taking over
twenty minutes [10], although this typically needs to be done only once. A recent method by
HajiRassouliha et al. [12] has been proposed for achieving accurate calibration of multi-camera
stereo systems.

Image Registration

Image registration (also called image alignment) is a process that transforms sets of images to
be in terms of a common coordinate system. Image registration has applications in medical
imaging, video stabilisation, military target recognition, etc. A. Ardeshir Goshtasby details
multiple methods which either rely on evaluating an objective function based on patterns of
colour concentration or by identifying features of correspondence which may include points or
contours [10].

For applications in facial modelling, a simple method of creating points of correspondence is
marking spots on the subjects face. However, the recently developed method at the Auckland
Bioengineering Institute has been used to track jugular venous pulse [1, 11]. The algorithm is
able to identify features on the skin to use as points of correspondence.

Disparity maps

Disparity maps are built from two images of a scene, and represent horizontal shift of corresponding
pixels between the two images. They are a common method of creating 3D point clouds [9].
Algorithms for computing disparity maps rely on the image pair coming from horizontally aligned,
parallel cameras [13]. However, image rectification can be used to apply disparity methods to
generalised multi-camera stereoscopes [14]. Rectification projects images onto a common plane,
such that points of correspondence are aligned in the horizontal plane (have the same vertical
coordinate). This makes the images appear as though they have been taken by horizontally
aligned, parallel cameras.
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Through camera calibration and disparity maps, pixels can be projected into a 3D point cloud
representing the scene captured in the two images [13]. Methods for creating disparity maps
are comprised of two elements: the first is the algorithm used to search for the matching pixels
between images; the second is the image registration algorithm used to measure similarity of
pixels (or pixel groups) between the images, and hence calculate a matching cost [13].

Searching Algorithms

Searching algorithms are further divided into local and global methods [15]. Local methods
only consider the intensity values of a local window of pixels during the search, providing low
computational complexity and short run times. The disadvantage of these methods is that the
winner take all optimisation can lead to noisy disparity maps, especially in scenes with lots of
uniform texture. Another shortcoming of local algorithms is that they commonly assume pixels
within the window of support have similar disparity values. This is often not true, especially for
faces which have sudden and large changes in depth around the nose and eyes.

Global methods address this by assigning disparity values by minimising an energy function
designed to smooth the disparity map. Such energy functions typically include one term for
matching costs similar to local methods, and one term to apply penalties for changes in disparity
between neighbouring pixels. In contrast, these methods are computationally expensive and are
not practical for real-time systems.

Semi-global methods [16] have also been proposed to reduce the computational effort required
by minimising over a subset of the image, e.g., each horizontal line of the disparity map. These
methods produce smoother maps than those from local matching with minimal addition to
the computational effort required. Implementations of these algorithms typically use dynamic
programming or belief propagation to enforce smoothness of disparity maps [13].

Matching Costs

The criterion for measuring match quality during the search is crucial to the overall performance
of the algorithm. The criterion must be efficient as it is called many times during the search. It
must also be consistent across intensity values so that matching costs are not dependent on how
bright the images are [13]. Typical methods used are the sum of absolute differences (SAD) and
sum of squared differences (SSD). Although, other metrics such as normalised cross correlation
(NCC), census transforms (CT), and structural similarity index (SSIM) are also discussed in the
literature. These methods are computationally expensive, but are more reliable for images taken
with poor lighting conditions [13].

2.2.4 Time-of-Flight Cameras

Time-of-flight cameras are another frequently discussed method for depth estimation in the
literature. They estimate depth by projecting structured light and measuring the time taken to
travel from the camera, to the object, and back to a sensor [17]. They are therefore subject to
noise from background light, which can interfere with reconstruction accuracy. Another drawback
is that emitted light may be reflected from multiple surfaces, causing inaccuracies in depth
readings.

2.3 Surface Reconstruction

The goal of surface reconstruction is to approximate an unknown surface from a set of points in
R3. These points may not lie exactly on the true surface. Therefore, surface models that use
a ‘best fit’ approach are common in the literature. This is referred to as an implicit surface,
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as opposed to an explicit surface which joins all points [18]. Implicit methods are typically
parametric models fitted to the raw point cloud (B-spline, NURBS, etc.). Whereas triangular
meshes are a typical example of explicit methods.

Triangular methods are the core part of reconstruction algorithms [19], and the most commonly
used for representing faces [4, 10]. These methods connect neighbouring points to form a surface
mesh. There are various triangulation methods discussed in [20, 19, 21] such as Delaunay, Voronoi,
and Crust. The literature also discuss the various methods of tackling the problems that may be
encountered when attempting to fit a surface to a point cloud. These problems are shown in
Figure 2.2.

Figure 2.2: Different artefacts shown on a 2D curve. Images taken from [21]

2.4 Feature Reduction

Feature reduction methods are used to create lower-dimensional representations of data for
efficient processing and analysis. This can be done by removing irrelevant or redundant features,
or by amalgamating features into more significant predictors. Principal component analysis
(PCA) is widely used in literature for dimensionality reduction and is often employed in 3D
facial recognition methods. PCA converts data to be in terms of linearly uncorrelated variables
(principal components), by projecting the data into a lower dimensional space. One drawback of
PCA is that it assumes variables are related to each other linearly [22]. Eigenmaps and ISOMAPs
are also discussed in literature, which are non-linear methods for feature reduction [23], although
these require optimisation, and results may be less interpretable.
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3 Statement of Research Intent

This project aims to develop a framework for reconstructing faces using a two-camera stereoscope.
Dense point clouds will be reconstructed using stereo reconstruction algorithms. The image
registration algorithms developed in [1] will then be used to attempt to track the skin during
filmed expressions. This pipeline will later be used for determining the number of parameters
required to efficiently represent facial expressions, and investigate trade-offs between model
accuracy and the number of parameters used.

3.1 Resources

Two FLIR Flea 3 monochrome cameras will be used for recording our expressions. These cameras
can record 1280×1024 video at up to 150 fps. The cameras will be equipped with a 6 mm
DF6HA-1B Fujifilm lens. A stereoscope will be constructed using the two cameras, mounted
onto a tripod with an acrylic base.

LabVIEW [24] will be used to record video with the cameras and vary the image capture settings.
Therefore, a licence will be required for this.

A MATLAB licence with the Computer Vision Toolbox [25] will be required to use the ABI’s
newly developed image registration algorithms.

Regular meetings with supervisors Professor Poul Nielsen, Professor Martyn Nash, and Dr Amir
HajiRassouliha will be crucial for staying on track with the project, and their expertise in the
field will be vital to the success of this project.

3.2 Methodology

Image Acquisition

Using the Flea 3 cameras, a two-camera stereoscope will be designed and constructed. LabVIEW
will then be used to capture expression videos with the stereoscope.

Geometry Estimate

Stereo reconstruction algorithms will be used to construct disparity maps and point clouds of
the initial geometry.

Deforming the Geometry to Mimic Expressions

The frames obtained in the image acquisition step will then be fed through the ABI’s image
registration algorithms to determine the 2D vectors of deformation. Once these are obtained,
the same deformations can be applied to the 3D model to mimic the facial expressions in the
recordings.
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3.3 Validation and Verification

The success of our project can be measured in the first instance by inspecting the quality of the
3D models that are produced. This could be done visually, but also by taking measurements of
the models produced and comparing them to the real object.

3.4 Limitations of Scope

Some potential areas to be explored in subsequent projects could be:

Fitting parametric surfaces to point clouds

Fitting a parameterised surface model to point clouds reducee the number of features required to
represent the facial expressions. It will also provide smoother models, which will serve to remove
noise from point clouds.

Determining a set of Basis Features

PCA could be used to extract the underlying components that describe facial expressions. This
would allow the modelling of expressions as a linear combination of basis features.

3.5 Significance of Research

Development of a pipeline that can take a video recording of a subject making various expressions,
and create 3D models of the expressions would be a useful tool for future research at the Auckland
Bioengineering Institute. It will also begin the first phase in examining methods for efficient
expression representation.
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4 Methodology

The methodologies for the project are divided into four sections; image acquisition, 3D recon-
struction, tracking, and analysis. They are explained in more detail below.

4.1 Image Acquisition

4.1.1 Intel RealSense

The Intel RealSense D435i is an off-the-shelf stereo camera system which includes two monochrome
cameras, an infrared projector, and an RGB camera. This camera was purchased prior to the
commencement of our project and was the intended medium for capturing our stereo images.

Figure 4.1: RealSense Camera. Image from [26]

In order to interact with the cameras, a Python interface was designed. This interface allowed the
user to control image capture settings such as the camera’s frames per second (fps), resolution,
and turning the infrared projector on/off.

Using our Python interface, we successfully captured images for initial testing of the image
registration algorithms described in Section 4.4. However, after extensive testing with lighting
conditions, recording at various distances, and varying parameters in the tracking algorithm, it
was found that the results of applying the algorithms to these images were unsatisfactory for our
applications. The fixed focal length of the Intel cameras would not allow us to be close enough
to the cameras to capture the required texture detail while still being in focus.

As the Intel cameras were found to be unsuitable, it was decided that the project progress using
FLIR Flea 3 cameras, as these can be equipped with different lenses to adjust focal length, while
still meeting the expected fps and resolution requirements.

4.1.2 Flea 3 Stereoscope

Design and Construction

Using two FLIR Flea 3 cameras, we designed and built our own stereoscope, shown in Figure
4.2 (a). Preliminary tests were performed by equipping the cameras with different lenses (with
focal lengths of 6 mm and 12.5 mm) and assessing the texture detail in photos at different depths.
From this, it was determined that there needed to be less than twenty centimetres between the
cameras and the subject for sufficient detail to be captured. In general, a shorter focal length
increases the field of view (FOV), but causes more lens distortion. We found that the 12.5 mm
focal length did not provide an adequate FOV to capture the entire face at close distances, and
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therefore the 6 mm lens was used. The increased distortion caused by the shorter lens were
addressed using the methods described in sections 4.2 and 4.3.1.

Choosing the physical placement of the cameras involved determining a suitable baseline (distance
between the cameras) and camera angle. Increasing the angle of the cameras provides more
overlap of the camera FOVs, and allows more areas of the face to be captured. However, if the
angles are too steep, slanted regions (areas of the face where the angle between cameras and
surface normals are large) of the face may not appear in both photos, and consequently will not
be able to have their depth measured. This trade-off is visualised in Figure 4.2 (b) and (c).

10 mm acrylic sheets were used for the base of our stereoscope because it is readily available, easy
to cut, and sufficiently rigid for our purposes as the cameras will not be moving during image
capture.

Three different base plates were constructed, with the cameras 50 mm, 75 mm, and 150 mm apart.
Together, with some variation in distance, this allowed for experimentation with a range of angles.
When creating the point clouds discussed in section 4.3, it was found that the angles required on
the 150 mm base plate were often too steep, resulting in loss of depth resolution around the nose
and eyes. Using the smaller base plates captured these areas better, but resulted in a loss of
information near the sides of the face. These areas of the face are expected to be less critical for
representing expressions, so the smaller base plates were preferable.

(a) Our stereoscope, fitted
with the 75 mm base plate

(b) Diagram showing view
overlap with angled cameras

(c) Diagram showing view
overlap with parallel cameras

Figure 4.2: Stereoscope design

Image Capture

Flea 3 cameras are routinely used by researchers in the ABI, and the preferred software for
interacting with the cameras is LabVIEW. Existing code for interacting with an older version of
the FLIR cameras was provided obtained from a previous project [11]. This code was adapted
and updated to work with our stereoscope, and an interface was designed to allow the user to
vary the camera settings; fps, gain, exposure time, and the directory for saving images and video.

When our interface was used to capture images, it was observed that there were uniformly
distributed lines on the images which had a higher intensity than the rest of the image. These
are shown in Figure 4.3. The lines caused the image registration algorithms discussed in sections
4.3.2 and 4.4 to fail and halted our progress on the project. It was suspected that the lines were
due to the indoor artificial lights in flickering at high frequencies, but testing the cameras in
sunlight proved this was not the case as the lines still appeared. Consulting with our supervisors,
it was suggested that radio frequency interference had caused similar problems in the past, and
could be causing the lines, However, changing our environment to test this theory also did not
remove the lines.
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It was eventually determined that the source of the lines was an internal sensor artefact that
was imposing fixed pattern noise on the images. The newer cameras have a correction for this
hardcoded into the firmware. The codes we inherited had this correction disabled as it had
previously caused issues on the older firmware versions. Re-enabling this correction removed the
lines from images and we were able to progress with the project.

Figure 4.3: Vertical lines caused by fixed pattern noise

4.2 Camera Calibration

Camera calibration is the process of estimating the parameters of a stereo camera system. These
are the intrinsic (focal length, optical centre, and lens distortion), and the extrinsic (camera
location and orientation) parameters.

A checkerboard pattern was printed onto a sheet of acrylic for estimating the parameters of our
stereo system. Approximately one hundred photos were taken of the checkerboard at various
angles, positions, and depths with our stereo cameras.

MATLAB [25] and OpenCV [27] (an open-source computer vision library) were used to estimate
the parameters of our stereoscope. OpenCV detects the corners of the checkerboards in each
photo. Because the dimensions of the squares are known, the camera parameters can be estimated.
A method for optimising camera parameters has been developed at the ABI [12], and was used
to achieve accurate calibration. The calibration procedure consists of taking initial estimates,
and then measuring reprojection error with three metrics:

• Traditional back-projection errors—projecting of the corners into 3D space, then back onto
the images, and observing the error induced.

• Absolute 3D length error—projecting corners into 3D space, and observing the error in
average square size.

• 3D shape error—projecting the corners into 3D space, and observing the error between
the points and the plane that best fits the points.

A trust-region method [12] is then used to optimise these three error functions. This process
takes approximately two to three hours to complete, and was required every time the parameters
of the stereoscope changed. This can occur if the cameras are moved, or if the focus is changed.
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4.3 Reconstruction

Using two photographs of a scene, and the parameters of the stereo camera system that captured
them, a 3D representation of the scene in the photographs can be reconstructed.

This is achieved by locating matching features from the scene in both images and measuring its
shift (in pixels) between the two images. If the location of the stereo cameras in space, their
orientation, and other similar parameters are known, the depth of the feature can be calculated
using projective geometry.

The original plan for this project was to use the image registration and 3D reconstruction
algorithms developed at the ABI for our reconstructions. However, the algorithm assumed
smooth changes in depth and slope for its reconstruction process, and was therefore unable to
capture areas with sudden changes like the nose and eyebrows. Attempts were made to resolve
this by reconstructing the face piece by piece. However, this led to inaccuracies at joins, and
still failed to capture all regions of interest. Alternative methods for 3D reconstruction using
disparity maps were therefore explored, with a focus on keeping the methods generalised so that
more cameras may be added in the future.

4.3.1 Image Preparation

Some pre-processing steps are used to prepare the images and simplify the reconstruction process.
These steps are the removal of lens distortion, and the rectification of images.

Undistortion

Lens distortion is an intrinsic parameter that was estimated for each camera during the calibration.
OpenCV [27] was used to remove lens distortion from the images using the estimated lens distortion
parameters.

Rectification

Stereoscopic cameras generally view a scene from different angles and locations. Because of this,
the scene will appear different in the two images. For example, the left cheek will be closer to
the left camera, and will consequently appear larger than it does in the right camera.

Image rectification can be used to correct this discrepancy. Rectification projects images onto a
common plane, such that points of correspondence are aligned in the horizontal plane (have the
same vertical coordinate). This makes the images appear as though they have been taken by
horizontally aligned, parallel cameras. The simple case of horizontally aligned, angled images
can be visualised, as in Figure 4.4. The red and green planes show how the observed scene
(blue plane) is seen from the perspective of the two cameras. The boxes in the back show how
rectification brings the images onto a common plane.
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Figure 4.4: Rectification for horizontally aligned cameras. Image from [28]

Rectification was performed using MATLAB’s rectifyStereoImages() function [25], which
is passed the two images and the camera parameters as inputs. The function returns projective
transforms to rectify the images, as well as the reprojection matrix Q, which is used in section
4.3.3 to project image points into 3D coordinates in the rectified system. A projective transform,
H, can be applied to an image with Equation 4.3.1 [14]:

H =

R1 R2 Tx
R3 R4 Ty
P1 P2 1

 ,
x′y′

1

 = H

xy
1

 , (4.3.1)

where:

• Ri form a rotation matrix

• Pi form a projection vector

• Ti form a translation vector

• x, y represent pixel coordinates in the original image

• x′, y′ represent corresponding coordinates in the rectified image

The reprojection matrix is of the form

Q =


1 0 0 −cx
0 1 0 −cy
0 0 0 f
0 0 α β

 ,
where cx and cy are the coordinates of the focal centre, α and β are constants from the rectification
process, and f is the focal length.

For cameras in arbitrary positions, rectification generalises to an optimisation problem, where a
projective transform must be identified from matching points in photos from each camera. This
can also be done with checkerboards. This method is therefore generalisable to stereoscopes with
more than two cameras that are not horizontally aligned.

Figure 4.5 shows a pair of rectified images. Each pair of coloured lines intercept the same features
in both images, as rectification has aligned the vertical axis of the images. This simplifies the
correspondence problem as it reduces the search space from 2D to 1D, since all features will have
the same vertical coordinate.
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Figure 4.5: Horizontal feature alignment from rectification

Cropping

After rectification, the images were cropped down by manually specifying the coordinates of the
bounding box that encloses the region of interest. This reduced the search space and controlled
disparity ranges for algorithms described in 4.3.2.

4.3.2 Disparity Maps

The disparity map of a scene is the same size as the stereo images, but each pixel value represents
the difference in horizontal coordinates between the images. Pixels with high disparity are closer
to the cameras, and pixels with lower disparity are farther away [13]. Disparity maps can be
used to reconstruct a 3D scene from rectified images.

Algorithms for computing disparity maps have two parts: the first part determines how the
algorithm searches the images for matching pixels; and the second is the metric used for measuring
the similarity of subimage pairs. These metrics are the simpler part of the process, and commonly
use one of the following methods [13]:

For two subimages S1 and S2, of size (2W + 1)× (2W + 1),

Sum of absolute differences (SAD) is calculated as:

SAD =
∑

−W≤i≤W

∑
−W≤j≤W

|S1[x+ i, y + j]− S2[x+ i, y + j]| . (4.3.2)

Sum of squared differences (SSD) is calculated as:

SSD =
∑

−W≤i≤W

∑
−W≤j≤W

(S1[x+ i, y + j]− S2[x+ i, y + j])2 . (4.3.3)

Alternatively, a structural similarity index measure (SSIM) [29] could be used. The aim for
this section of the project was to find the best method for consistently finding good disparity
maps. Various versions of disparity algorithms were implemented and tested to do this, including
commercial and open-source algorithms from MATLAB [25] and OpenCV [27]. Some code was
also adapted from [30]. However, many of these methods were found to perform poorly and are
omitted from this report. The final algorithms used are described below.
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Block Matching

Block matching [14] is the simplest approach for computing a disparity map. It works by taking
a w × w window (usually square, but this is not a requirement) in one image, and searching for
the best matching window in the other image. This gives a disparity value for the pixel at the
centre of the matched windows. Completing this search for every possible window in one image
then gives a complete disparity map.

Figure 4.6: Example of potential matched block from block matching

For a given image similarity measure, S (SAD, SSD or similar), block matching can be thought
of choosing D(x, y) such that Equation 4.3.4 is minimised

∑
y

∑
x

S (I1[x, y, w], I2[x+D(x, y), y, w]) , (4.3.4)

where:

• I1 and I2 are the two rectified images.

• I1[x, y, w] represents the w × w subimage of I1, centered at x, y.

Restrictions can be placed on D to reduce the search space and improve efficiency. For example,
if we constrain D(x, y) ∈ [0, 64] ∀x, y, then each window in I1 is compared with 65 windows
in I2. This was useful for our images as they are typically 600 pixels wide, even after cropping
down to the region of interest. A confidence threshold can also be included by flagging pixels
which did not have an acceptable match in the second image. These pixels can then be excluded
from the disparity map to have higher accuracy at the cost of depth resolution.

Block matching can also be modified to find subpixel disparities. This is done by finding the
minimum matching cost, and the matching costs of the two neighbouring pixels. Fitting a
parabola to these three costs allows the turning point to be used as a (usually) fractional disparity
value.

Block Matching With Dynamic Programming

Block matching can be improved by including smoothness penalties with dynamic programming
[15]. During the search for matching features performed in regular block matching, the similarity
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of windows is stored in a table to be used as a ‘cost’ of matching each window. When this table
is acquired for each scanline (row), the matching costs can be weighted with a smoothness cost
(based on change in disparity between neighbouring pixels) and each scanline of the disparity
map is then optimised through dynamic programming.

Mathematically:

D(1, 1) = argmin
dL≤d≤dU

{C(x+ d, y)}

D(x, y) = argmin
dL≤d≤dU

{C(x+ d, y) + P [D(x+ d+ 1, y) +D(x+ d− 1, y)− 2D(x+ d, y)]}

where P is the penalty per change in disparity between neighbouring pixels, and C(x− d, y) is
the image matching cost, calculated with SAD, SSD, or similar.

For the example matching costs in Table 4.1, regular block matching will choose the path outlined
by the red dots (disparity = 1, 1, 0, 1, 1) as these are columns with the minimum matching costs.
Dynamic programming with P > 0.5 will instead choose the path outlined by the blue dots
(disparity = 1, 1, 1, 1, 1). For this case, dynamic programming has smoothed the disparity values
by removing the outlier. Note that the ∞ in column one is there to enforce feasibility as a
negative disparity would leave the bounds of the image.

For example:

Table 4.1: Matching costs for disparity range −1 ≤ d ≤ 1 for each column

Example Cost Table
Disparity

Column -1 0 1
1 ∞ 4 3
2 4 4 3
3 4 3 4
4 4 4 3
5 4 4 3

subpixel disparities disparites can be found by applying the same principles as in regular block
matching, as described in Section 4.3.2

Semi-Global Matching

OpenCV has an implementation of block matching with dynamic programming that optimises
over eight directions instead of two (up, down, left, right, and diagonals) as an approximation of
global optimisation.

This version differs slightly to the implementation above as it applies fixed costs for changes in
disparity, rather than a multiplicative cost. The algorithm applies a cost P1 for smaller disparity
changes, and a larger penalty P2 for large changes in disparity. The algorithm is also built in
C, which means it runs much faster, and therefore makes it easier to tune parameters. The full
algorithm is described in detail in [27].
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4.3.3 Projection

Once a satisfactory disparity map is found, the reprojection matrix (found via image rectification
in Section 4.4), Q, is used to reconstruct the point cloud by using Equation 4.3.5.

w


X
Y
Z
1

 = Q


x
y
d
1

 (4.3.5)

where x, y, d are the pixel coordinates and associated disparity, X,Y, Z are the corresponding
world coordinates, and w is a normalisation parameter

Note that point clouds produced using this method are consequently in the rectified coordinate
system. This is corrected during the back-projection steps discussed in Section 4.4.1.

4.3.4 Post-Processing

Moving Average for Smoothing

In order to improve the smoothness of the reconstructed point clouds, a weighted moving average
smoother was developed. The smoothing algorithm works as follows:

1. Choose an n × n template matrix, x (n must be odd and ≥ 3). This will be rotated in
later steps, so asymmetric matrices were typically used. For example:

x =

1 2 1
1 3 1
1 2 1

 .
2. Extract an n× n window from the disparity map.

3. Flag and ignore disparity values very different to the centre value (typically a threshold
of 2-3 was used). This means that areas with high gradient are not flattened by the
smoothing.

4. From the valid disparity values, calculate the average second derivative (using finite
differences) in the horizontal and vertical direction, δH and δV respectively.

5. If |δH | > |δV |, assign higher weights to the disparities in the vertical direction, or vice
versa. This is done by rotating the template matrix x so that weights are greater in the
desired direction. For example:

w =

{
x if |δH | > |δv|
x> otherwise

This is useful for areas have more noise in one direction than in the other.

6. Replace the centre value of the current window with the weighted average from valid
disparity values, and rotated weights matrix w.

7. Repeat for every n× n window in the disparity map, as many times as necessary.

This method was found to be very successful in smoothing the point cloud with minimal loss to
the more delicate features such as the lips.
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Denoising

Some areas of the photos are consistently prone to errors. These are typically near the edge
of the face where camera views are significantly different, or due to specular reflection. This
can lead to groups of pixels that are not in line with the rest of the model. These typically slip
through the dynamic programming smoothing as they are larger groups of pixels, so the image
matching costs outweigh the smoothness costs during the optimisation.

These patches can be removed by using MATLAB’s denoising function, pcdenoise() [25].
This algorithm works by iterating through the point cloud, calculating the mean and standard
deviation in depth of the points n nearest neighbours (in the x, y plane). If the point has a depth
that is more than a threshold number of standard deviations away from the mean, it is removed.

4.4 Expression Tracking

HajiRassouliha et al. [1] developed a tracking algorithm, which traces features through a series
of undistorted frames. This algorithm can be applied to our photos to track features during an
expression. For this tracking to be useful, point-to-point correspondence must be maintained
throughout the expression. This is achieved by tracking all the points from the point cloud of
the neutral face.

The raw matched coordinates from the disparity matching could be used here, however, this would
render the post-processing performed on the point cloud null. A better method is to back-project
the processed point cloud onto the images and track those points during the expression. This
means the point cloud must be back-projected into points on the rectified images, and then
mapped back to the undistorted images for the tracking algorithm to work with.

4.4.1 Back-Projection

Point Cloud to Rectified Images

Rearranging Equation 4.3.5, world points can be translated into image coordinates (on the
reference image) with matrix multiplication via

1

w


x
y
d
1

 = Q−1


X
Y
Z
1


Adding the disparity to the x coordinate gives the corresponding coordinate in the second image
(as the images are rectified).

Rectified to Undistorted Images

Next, the points on the rectified images must be mapped back to the undistorted, non-rectified
images. As discussed in section 4.3.1, image rectification creates projective image transforms
to rectify the images. The inverse of these transform matrices is used to undo the rectification
transform similar to the previous step. This maps the matched points onto the undistorted
images to be ready for tracking.
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Projection

As the points are now back in the original coordinate system, the matched points are no longer
guaranteed to be horizontally aligned. This means that the projection methods discussed for
rectified images in section 4.3.3 are no longer appropriate. Instead, code from [31] has been
adapted, which works by computing the intercept of two lines projected from the camera origins
through the features image coordinate. This means that all point clouds are now in the coordinate
system of the reference camera.

4.4.2 2D Tracking

Now that all the points from the point cloud have been mapped to the undistorted images, the
ABI’s tracking algorithm can be applied [1].

The tracking algorithm estimates pixel displacements between two time-sequential images. If
the shift between images is too great, then the tracking may fail. On the other hand, if points
are tracked across too many frames, then the accumulation of error can become significant and
affect results. Therefore, time steps must be chosen carefully. Our recordings were typically
done at 90 fps, which provided flexibility in choosing which frames to use for tracking. At slower
stages in the expression, up to four or five frames may be skipped, but during faster parts, each
successive frame would be used.

This process is repeated until the expression is completed. This means that point-to-point
correspondence is held throughout the expression, and each stage of the expression can be
projected into its own 3D point cloud.

4.5 Principal Component Analysis

PCA was used to determine the dominant modes of depth change during expressions. Firstly,
point clouds were reconstructed for several expressions, and brought into a common coordinate
system using MATLABs pcregister() function [25]. Basis-spline (B-spline) [32] functions
were then fitted to each point cloud using the framework developed in [33]. B-splines are a
parametric surface represented by a grid of control points, and are discussed in depth in [33].
Once the B-spline surfaces were fitted to the different expressions, the parameters of each model
are arranged in a matrix like so:

Z =


φ11 φ12 . . . φ1n
φ21 φ22 . . . φ2n

...
...

. . .
...

φp1 φp2 . . . φpn

 ,
where φij represents the j’th model parameter in the i’th B-spline surface, n is the number of
parameters per model, and p is the number of surfaces. The principal components were then
extracted by computing the eigenvalues and eigenvectors of the covariance matrix, Z>Z, with
singular value decomposition [34]. The first principal component is the eigenvector with the
largest eigenvalue, the second component has the next largest eigenvalue, and so on. As the model
parameters are not tied to material points on the face, the modes (components) correspond to the
areas which experience the largest changes in depth during expressions, rather than generalised
deformations.
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5 Results and Discussion

3D point clouds have been reconstructed from stereo images using the methods described in
section 4.3. Tracking was able to be applied to a simpler case of rigid body motion, but accuracy
was lost when applied to expressions and results produced were invalid. This is likely caused by
a lack of texture present in the captured images.

5.1 Reconstruction

5.1.1 Block Matching

As block matching does not consider the disparity of neighbouring pixels during its search, it
can produce noisy point clouds with many speckles due to false matches. These can be seen in
Figure 5.1 (b). Figure 5.1 (c) and (d) show that increasing the minimum acceptable confidence
of accepted matches removed these outliers, but many of the correct matches were also lost,
particularly in areas of the face with sudden depth changes as these appear the most different
across images. The missing areas could be useful for representing expressions, therefore, it was
concluded that regular block matching is not appropriate for our applications.

(a) Low confidence front on (b) Low confidence angle shot
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(c) High confidence front on (d) High confidence angle shot

Figure 5.1: Point clouds produced with block matching

5.1.2 Semi-Global Matching

Point clouds produced with the semi-global block matching algorithm described in 4.3.2 are
significantly better than those from pure block matching. More areas of the face have been
captured, and large outliers have been prevented. There is still some noise, as shown in Figure
5.2 (b), but this is less significant than in block matching and can be corrected with some
post-processing.

(a) Semi-global matching — front on (b) Semi-global matching — angle shot

Figure 5.2: Point cloud produced with semi-global matching
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5.1.3 Post-Processing

Applying the post-processing methods from section 4.3.4 significantly improved the quality of the
reconstructions. The denoising successfully removed the outliers that remained after semi-global
matching, this is shown by comparing Figure 5.3 to Figure 5.2. The weighted average smoother
also corrected the roughness of the raw point clouds, and successfully maintained the shape of
features on the face, as shown in Figure 5.4.

Denoising

(a) Denoised cloud — front on (b) Denoised cloud — angle shot

Figure 5.3: Point cloud after denoising

21



Smoothing

(a) Smoothed cloud — front on (b) Smoothed cloud — angle shot

Figure 5.4: Point cloud after denoising and smoothing

5.1.4 Reconstruction Accuracy

While the shape of the cloud looks good by eye, it was necessary to assess the accuracy by taking
measurements of the reconstruction and comparing them with the true model. This process was
completed both for my reconstructed face, and also a rock, as its dimensions are known more
precisely (note that there are some stickers on the rock from a previous project to assist image
registration algorithms in matching). The measurements taken are shown in Figure 5.5, and
results are summarised in tables 5.1 and 5.2. Overall the dimensions matched very well. There
were some slight differences in the measurements of the face, but this was expected as dimensions
vary depending on facial expressions.

(a) Measurements taken on face (b) Measurements taken on rock

Figure 5.5: Measurements taken to assess accuracy
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Table 5.1: Face measurements summary

Label Description Actual (mm) Model (mm)
1 Pupillary distance 61 62
2 Eye width 24 24
3 Nose length 50 48
4 Mouth width 41 42
5 Distance between forehead wrinkles 12 12
6 Nose depth 13 14

Table 5.2: Rock measurements summary

Label Actual (mm) Model (mm)
7 76 76
8 35 35
9 75 75
10 37 37
11 34 34
12 33 33

5.2 Tracking

5.2.1 Translation of a Rigid Object

As a proof of concept for the project, the reconstruction and tracking were tested on the simpler
case of rigid body movement with a rock. A sequence of photos capturing an upwards translation
of the rock were taken. A 3D point cloud of rock was reconstructed from frame 15 using the
methods in Section 4.3, and then its movement was tracked from frame 15 to frame 25. This
is an arbitrary length of tracking that was chosen as the displacement of the rock across these
frames is expected to be similar in magnitude to the expressions I planned on tracking.

Figure 5.6 shows reconstructions of the rock before and after tracking. (a) and (d) show the
original reconstruction from frame 15, and (b) and (e) show reconstruction after tracking was
performed up to frame 25. Green represents the rock in frame 25 after tracking, and purple
represents the original reconstruction from frame 15. These two clouds are overlayed in (c) and
(f) to show the movement. The reconstruction has maintained the correct shape of the rock, and
the rigid upwards shift has been captured. However, there are some outliers that have appeared
from tracking, mostly along the bottom edge. These can be seen by comparing Figure 5.6 (d)
and (e), and also appear in (c) and (f). These could be dealt with by flagging points which have
extreme changes in depth when compared to neighbouring values.
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(a) Frame 15 — front on (b) Frame 25 — front on (c) Overlaid — front on

(d) Frame 15 — angle shot (e) Frame 25 — angle shot (f) Overlaid — angle shot

Figure 5.6: Comparison of point clouds before and after tracking

Figure 5.7 shows a random sample of points before and after tracking. This confirms that the
points have been tracked accurately as they are tied to the same material points on the rock in
both images.

Figure 5.7: Sample points tracked from frame 15 (left) to frame 25 (right)

5.2.2 Frown

Tracking a frown was not as successful as the rock example. Most of the expected areas have
moved in the right direction, however, the magnitudes of displacement do not appear to be correct,
and the eyebrows in particular have not moved. When inspecting the photos, the eyebrows
clearly move the most during the frown, so the tracking has not been successful in this instance.
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(a) Frown — front on (b) Frown — angle shot

Figure 5.8: Tracking of features during a frown

(a) Depth displacement (b) Tracking during frown

Figure 5.9: Tracking on my eyebrow

The depth displacement confirms that the magnitudes and positions of displacement are not
quite correct. Depth displacements are reaching 20 mm in some parts of the brow. The true
maximum depth displacement is expected to be closer to 5 mm. Figure 5.9 shows that there is a
discontinuity in the tracking near the eyebrows. Movement has been identified in the forehead
above the eyebrows, but the eyebrows themselves are almost stationary. This shows the eyebrows
have not been tracked successfully. This is likely due to the fuzziness of the eyebrows which
could be interfering with the image registration during tracking.

To improve the results of tracking, a new set of photos were taken with the face 150 mm from the
cameras. Being this close results in more texture being captured, but the whole face is no longer
seen in the field of view, so the results are restricted to the forehead. This showed promising
tracking results over my eyebrows as shown in Figure 5.10 (b). However, the depth displacement
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map shown in (a) still looked concerning, with displacements reaching up to 20 mm once again.
It was found that even with the improved texture, the tracked points were not tied to the same
material points throughout the expression. This is shown in Figure 5.11, and is most obvious
looking at the two points on the eyebrow, but also note that the points around the forehead
creases have had their movement exaggerated. Given more time, it would have been good to
continue experimenting with distances to determine how close the cameras must be for accurate
tracking. Alternatively, higher resolution cameras would also be useful in improving the accuracy
of the tracking.

(a) Depth displacement for close frown (b) Tracking during close frown

Figure 5.10: Tracking with close up photos

Figure 5.11: Sample points tracked from frame 26 (left) to frame 58 (right) during frown

5.2.3 Smile

Tracking features during a smile yielded similar results to the frown. Displacements are inaccurate,
and sometimes in incorrect areas. The depth displacement map shown in Figure 5.12 (a) is
patchy and not continuous as was expected. The 3D reconstruction in (b) also shows this as the
cheeks and mouth have become irregular and non-smooth.
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(a) Depth displacement for smile (b) Tracking during close frown

Figure 5.12: Tracking features during a smile

While we were unable to complete testing for this due to time constraints, the tracking has
been shown to work with elastic deformations in [1]. Therefore, the likely source of error in the
tracking is a lack of texture in the source images.

5.3 Principal Component Analysis

Point clouds were reconstructed using the methods described in Section 4.3 for five expressions,
shown in Figure 5.13.

Figure 5.13: Point clouds produced from various expressions

B-spline surfaces were then fitted to the point clouds using the process outlined in [33]. This
created a lower-dimensional representation of the depth for each expression. Applying PCA to
the model parameters in the various expressions as discussed in Section 4.5, we were able to
obtain the principal components. These are vectors corresponding to the areas of the face with
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the most depth change across expressions, and are generated with respect to the mean face, i.e.,
the averaged depth of each surface.

The surfaces models were then evaluated using the extracted components as model parameters
to create a depth representation of the modes. These are shown in Figure 5.14, and resemble
different areas of the face as expected.

(a) First principal component (b) Second principal component

(c) Third principal component (d) Fourth principal component

Figure 5.14: Extracted principal components
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6 Future Work and Recommendations

6.1 Possible Improvements

This section details how improvements could be made in completed areas of the project.

6.1.1 More Cameras

Using more cameras will allow cameras to be closer to the subject and therefore improve tracking
results. The whole face will then be reconstructed from each pair of cameras. This is possible as
all reconstructions will be in the same coordinate system due to the multi-camera calibration
procedure used. Alternatively, using cameras with higher resolution would also improve the
tracking results.

6.1.2 Hardware Triggering

Currently, we use LabVIEW to trigger both cameras and capture time-synchronous images.
This software triggering approach is expected to have more significant delays than physically
connecting the cameras and triggering image capture via hardware. By recording a stopwatch,
it is estimated that the delay in capture between the two cameras is typically < 1 ms, which is
sufficient for this project. However, hardware triggering may be more reliable for keeping the
time delays low, and could be required for very swift movements or if more than two cameras are
being used, as this could slow down the software triggering.

6.1.3 Other Calibration Targets

It has been shown that checkerboards are not the best calibration target. Circles are better
targets as they contain more information per shot which can result in extremely accurate camera
calibration [35]. This is also not essential for our project purposes as the checkerboards with
optimisation are still able to calibrate the cameras to a high degree of accuracy.

6.1.4 Correspondence Between Expressions

Currently, expressions are filmed separately, and compared to the neutral face at the beginning
of the recording. As a result, there is no point-to-point correspondence between expressions and
PCA can not be used in this format. This could be addressed in three ways:

• Overlaying point clouds to find the best correspondence match between the sets of neutral
faces.

• Sequentially filming a wide range of expressions, and tracking features throughout the
entire video.

• Fitting parametric models to the clouds. This creates a lower-dimensional model described
by fewer parameters. These parameters would serve as correspondence points and reduce
the computation required for PCA.
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6.1.5 Combining Disparity Maps

It was found that the window size used in the semi-global matching algorithm had a substantial
influence on the disparity map produced. If the window was too large, then the reconstructed
face would lose some of the finer details such as the shape of the lips and eyes. However, having
a smaller window produced a less smooth point cloud with much more gaps.

It is possible to run the algorithm with a variety of window sizes and compare the disparity maps
produced. Outliers for each pixel can be removed, and the remaining data can be combined with
an averaging process. This produced significantly better point clouds with excellent resolution
and almost no noise. However, the averaging process resulted in a non-smooth surface. In future,
better methods than averaging could be explored for combining disparity maps to maximise
accuracy and maintain smoothness.

6.2 Next Steps

There are several options for improving tracking accuracy in order to produce point clouds with
point-to-point correspondence. They include; using more cameras placed closer to the face, using
higher resolution cameras, or using colour cameras instead of monochrome.

Once accurate point clouds are achieved with the tracking algorithm, the PCA pipeline developed
in this project can be applied to extract a set of basis faces, in order to represent expressions
efficiently and accurately.
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7 Conclusions

This project developed a framework for modelling a face in 3D, and assessed the feasibility of
tracking skin during expressions to deform the 3D models.

The pipeline for image acquisition, camera calibration, and 3D reconstruction has been successfully
developed and tested.

The tracking process was demonstrated to work for the simplified case of tracking rigid body
motion on a highly textured rock, however, difficulties arose when applying tracking to facial
expressions. It is suspected this is due to a lack of texture captured with the current setup.

As accurate models with point-to-point correspondence were not able to be produced, parametric
surfaces were fitted to 3D point clouds of several expressions. PCA was then applied to the
parameters of the surface models to determine a set of basis vectors.

In future works, point clouds or models with point-to-point correspondence may be achieved.
This PCA process can then be applied to these models to produce a set of basis faces, such that
a linear combination of the set can represent any expression.

In order to achieve point clouds with point-to-point correspondence, further testing should be
done in the following areas:

• Testing close up (< 100 mm) tracking with a single camera to verify the possibility of
accurate tracking using Flea 3 cameras. If this is unsuccessful, alternative cameras may be
required.

• Performing another simplified case of non-rigid motion, perhaps on a highly textured
balloon or similarly deformable object. This will serve to rule out the possibility that the
non-rigid deformations are causing issues with tracking.
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