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Abstract

As New Zealand’s data landscape evolves, driven by population growth, technologi-

cal advancements, and increased global competition, the need for efficient geospatial

analytics has grown significantly. Geocoding, the process of converting named loca-

tions into geographical coordinates, plays a central role in decision-making for various

industries such as emergency services, retail, and urban planning. While existing

commercial and open-source geocoding solutions are available, they often suffer from

high costs, slow processing speeds, security concerns due to cloud processing, and

limitations in handling large volumes of historical address data.

This thesis addresses these drawbacks by developing an innovative, open-source

geocoding solution tailored to New Zealand addresses. A comprehensive review of

international geocoding methodologies was conducted. Methods from this survey

were then selectively adapted to suit the needs of this project, and a novel method

based on compositional vectors was proposed. A real dataset of addresses was sourced

from New Zealand Post for evaluation, and the methods implemented for this project

demonstrated performance competitive with leading commercial solutions.

The outcome of this research is the creation of a Python package that provides efficient,

locally executable geocoding with a focus on speed, accuracy, and accessibility. This

package, accompanied by a user guide and demo website, aims to offer a practical and

cost-effective solution for geocoding in New Zealand, enabling better decision-making

across industries.

https://glam-demo.lmor152.com
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Chapter 1
Introduction

As the data landscape in New Zealand matures, driven by factors such as a growing

population, technological advancements, and heightened global competition, enter-

prises are increasingly turning to data and optimisation strategies to enhance their

operations and maintain competitiveness. This process of optimisation frequently re-

lies on geospatial analytics, with geocoding playing a pivotal role.

Geocoding, the process of converting named locations into geographical coordinates,

enables the geospatial analytics used in industries such as emergency services, retail,

and urban planning. While both commercial and open-source geocoding solutions are

available, these often prove to be prohibitively expensive, sluggish, and unsuitable for

bulk geocoding of historical address data.

Drawing upon my experience as a Data Science Consultant in New Zealand, this thesis

explores the methodologies employed by geocoding algorithms on an international

scale. It further discusses the application and implementation of these algorithms

for New Zealand addresses, proposing a novel solution for address matching. An

evaluation of the implemented methods is conducted, comparing their performance

against state-of-the-art commercially available solutions. Finally, this thesis describes

how the implemented methods are packaged and made publicly available for general

use.





Chapter 2
Statement of Research Intent

Given the constraints posed by existing geocoding solutions, projects focusing on lo-

cation or route-based logistics/optimisation often encounter challenges in their initial

phases. The upfront costs associated with geocoding, coupled with the difficulty of

assessing potential benefits without coordinate data, can impede the progress of such

projects. This research aims to address these obstacles by developing an alternative

solution for matching addresses to the Land Information New Zealand (LINZ) NZ

Street Address (NZSA) dataset [24]. As such, the proposed solution will prioritise the

following criteria:

1. Speed: The solution should facilitate a swift turnaround of analytics.

2. Accessibility: It should be freely available and not require extensive software

installations or specialist hardware.

3. Local execution: The solution should be executable locally to meet potential

security requirements surrounding personally identifiable information.

4. Accuracy: It should maintain sufficient precision for informed decision-making

while balancing speed and portability.

5. Ready to use: It should not require model training or configuration before

geocoding.
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2.1 Validation and Verification

The success of this project can be measured against the suggested criteria. Speed and

accuracy comparisons will be made against commercial solutions and free/open-source

alternatives. These comparisons will be made with a sample dataset of NZ addresses.

2.2 Limitations of Scope

Some potential areas to be explored in subsequent projects could be:

• Extension to named locations and non-residential addresses

• Implementation and comparison to more existing methodologies

• Generalisation to other countries

2.3 Significance of Research

This research will provide a free and open-source solution for bulk geocoding NZ

addresses.



Chapter 3
Literature Survey

This survey explores geocoding techniques used in the literature, with a focus on

methods designed to match lookup/query addresses to a reference address database

and assess their performance and limitations under different conditions.

3.1 Methodology

A document search was conducted in July 2023 using a combination of Google Scholar

and Scopus.

Google Scholar was used first with a generic search for “address matching techniques”

limited to 20 results. This provided a generic starting point as Google Scholar au-

tomatically searches for synonyms and similar words. Keywords were then identified

from relevant papers in this initial search, and Scopus was used to conduct a more

systematic search. Results were then combined and manually filtered based on title

and abstract to produce a refined list before being sought for retrieval. Details on the

manual filtering are given in §3.2.
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The query used in Scopus was:

TITLE-ABS-KEY (

geocod*

AND address

AND ( matching OR parsing OR tokenization OR tokenisation OR

linkage OR resolution )

AND ( local OR speed OR compar* OR cloud )

)

AND ( LIMIT-TO ( LANGUAGE , "English" ) )

3.2 Search Results and Discussion

Figure 3.1 presents a summarised flowchart of inclusion/exclusion for this survey. The

full breakdown is included in Appendix B.

Id
en
�
fi

ca
�

o
n Records iden�fied from

Google Scholar (n = 20)
Scopus (n = 87)

Records removed before screening
Duplicate records removed (n = 5)

Sc
re

en
in

g

Records screened (n = 102) Records excluded 
based on �tle and abstract (n = 74)

Reports sought for retrieval (n = 28) Reports not retrieved (n = 0)

In
cl

u
d

ed Reports included (n = 28)

Figure 3.1: Literature Review Search Results

Results that were filtered out typically discussed the application of geocoding algo-

rithms to various problems rather than the development of the geocoding algorithms

themselves. This is hard to avoid as the applications of geocoding algorithms are often
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used to solve a similar problem as the algorithms themselves, e.g., matching patient

records in health data may make use of the patients’ addresses.

The initial search using Google Scholar provided a good base for the search. These

results provided a good range of keywords used to construct the systematic search

with Scopus. This approach was helpful as crafting a high-quality search with Scopus

limited the number of papers for inclusion without restricting publication date or

missing any key techniques. The result was a tractable list of papers that cover a wide

variety of methodologies and demonstrate the evolution of techniques over time.

3.3 Findings

The literature discussed many approaches to address matching, with varied degrees

of complexity. The geocoding process typically followed a variant of this three-step

process:

Parsing 
Model

Matching 
Model

Loca�ng
Func�on

Matched 
Addresses

Structured 
Addresses

Unstructured 
Addresses

Located 
Addresses

Figure 3.2: Geocoding Process

The implementation of this process varies based on the supporting reference databases

and the chosen models. In particular, for deep learning models, the parsing and

matching models may be combined, in which case the unstructured addresses are fed

directly into the matching model (dotted arrow). A locating function is also sometimes

required if the address reference database does not include location information and

is instead accompanied by an addressing system.

Within the parsing/matching/locating models, multiple techniques may be used to-

gether to produce the best result. This review breaks down address-matching algo-

rithms into their composite techniques. The review also focuses on the parsing and

matching process, as the NZSA includes coordinate data, removing the need for a

locating function.

A summary of the techniques used in the literature is provided in Table 3.1. Note

that some of these techniques are applicable to both parsing and matching. These
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techniques are included under the section that they are most commonly used. Papers

that propose multiple methods or ensemble methods are included once under each

methodology used.

Method Used By

Parsing

Rules-Based [44, 5, 26]

Hidden Markov Models [11]

CRFs* [11, 59, 3]

Matching

Blocking [11, 3, 13]

Fuzzy Matching [29, 43, 59, 44, 58, 26]

Indexing [16]

Vectorising [29, 43, 60, 26, 10]

Pretrained Embedding [11, 27, 30]

Custom Embedding [60] (RNN/CNN)**

[43, 30, 32, 57, 13] (Transformers)

Classification Models [11, 30, 59, 3, 57, 27, 26]

Dataset Generation [43, 30, 32]

* Conditional Random Fields (CRF)

** Recurrent Neural Network (RNN), Convolutional Neural Network (CNN)

Table 3.1: Techniques Used in Different Geocoding Implementations.

3.3.1 Preprocessing

Before training and/or inference, most geocoding algorithms applied some prepro-

cessing to reduce the heavy lifting required by the subsequent models. This section

discusses the most common preprocessing steps in the literature.

Cleaning

Cleaning methods focus on removing irrelevant information from input addresses. The

exact cleaning rules depend on the application and context of the model, but [31]

suggests the following:
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• Deduplication: This is relevant for both training and inference. Duplication in

training data should be avoided to protect against overfitting. Duplicated data

during inference leads to redundant processing time and slower inference.

• Lowercasing/uppercasing: Using a common letter casing reduces the vocabulary

sizes required for modelling, and there is usually no non-linguistic meaning to

the letter casing.

• Removing special symbols: For many address formats around the world, special

characters such as *^%@ are not used but may be included in accompanying

information such as building names.

• Trimming whitespace: Removing leading, trailing, and otherwise excessive

whitespace improves the standardisation of the address data before being

inputted into the model.

• Specific adjustments: Some datasets may benefit from specific cleaning depend-

ing on their context, e.g., removing (or adding) ‘New Zealand’ when all addresses

are known to be within NZ.

Tokenisation

Tokenisation is the process of segmenting a single string into a list of smaller, represen-

tative strings. These tokens represent a unit of text that a natural language processing

(NLP) model can learn a meaning for. The tokens could be words from the original

string, subwords like ‘un’ and ‘likely’, or character-based n-grams, where the list is a

rolling window of n-length strings [43].
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“70 Symonds Street, Grafton, Auckland”

Tokenisation

Method Tokens

Words [ ‘70’, ‘Symonds’, ‘Street’, ‘Grafton’, ‘Auckland’ ]

Bigrams [ ‘70’, ‘0 ’, ‘ S’, ‘Sy’, ‘ym’, ‘mo’, ‘on’, ... , ‘nd’ ]

Trigrams [ ‘70 ’, ‘0 S’, ‘ Sy’, ‘Sym’, ‘ymo’, ‘mon’, ... , ‘and’ ]

Figure 3.3: Example of Tokenising an Address ( Indicates a Space)

Intuitively, using words and subwords as tokens provides the most direct link between

language and model (statistical, deep learning, or otherwise), as any representations

learned by models can be mapped back to whole words in the source language. The

main disadvantage of this for address matching algorithms is it requires a very large

vocabulary. It is also prone to out-of-vocabulary (OOV) errors when the model en-

counters a new word that was not present in training data. The use of subwords

improves this problem for many NLP tasks.

For example, a model may not recognise the word ‘electroencephalography’, but it

can be tokenised into ‘electro’, ‘encephalo’, and ‘graphy’. This allows deep learning

models to understand a whole word from its parts. However, addresses are extra prone

to OOV errors as they include many proper nouns and typos. The use of subwords does

not provide many advantages here. For this reason, the use of tokens such as bigrams

and trigrams is common in the literature [29, 26, 10, 11, 27, 60, 43, 30, 32, 57, 13].

Using n-grams reduces the vocabulary size and the likelihood of OOV errors, improving

efficiency and generalisability. The relationship between n-gram size and vocabulary

is exponential, 𝑉 = 𝑘𝑛, where 𝑉 is the vocabulary, 𝑘 is the cardinality of the set of

allowed characters after cleaning, and 𝑛 is the n-gram size. This increase in vocabulary

allows NLP models to learn more about the semantic meaning of text and sequential
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characters. However, it also increases the storage size required for the model, as

parameters need to be stored for every token in the vocabulary.

3.3.2 Parsing

As addresses are often stored as unstructured text, parsing this data is a natural first

step taken on the road to address matching. Parsing — also referred to as segmenta-

tion — is the process of converting an unstructured address to a structured/labelled

address, i.e., identifying labels for each part of the unstructured address.

“Auckland Bioengineering Institute, 70 Symonds Street, Grafton, Auckland 1010”

Parsing

Feature Address Component

Building Name Auckland Bioengineering Institute

Street Number 70

Street Name Symonds Street

Suburb/Town Grafton

City Auckland

Postcode 1010

Figure 3.4: Example Address Parsing

Complications arise when converting from unstructured to structured data as the same

address can be represented in many different ways [26], for example:
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Address Format Variation

70 Symonds Street, Grafton, Auckland 1010 Fully qualified address

ABI, 70 Symonds Street Includes a building name

70 Symonds Street Street number and name only

70 Symonds Street, Auckland Central Incorrect (neighbouring) suburb

70 Symonds St, AKL Uses abbreviations for street and city

70 Simmonds Street, Auckland Includes typographical error

Table 3.2: Example Address Representations

These are just a handful of problematic examples that are commonly found in un-

structured address data. Depending on the parsing model used, there can also be

difficulty identifying components for new/unseen streets and suburbs. This is due to

some parsing models remembering known locations rather than parsing the addresses

based on their structure.

The literature discussed several approaches to address matching that are designed to

combat issues with address representations such as these. The next sections summarise

these methods and discuss when each is most effective.

Rule-Based

The most basic way to parse an address is by identifying patterns in the address

format/dataset. This may involve searching for known suffixes for states/provinces,

streets, etc. Construction of these rules can be time-consuming and requires thorough

inspection of the dataset. Once the rules have been defined, regular expressions (regex)

are an effective way to implement them. Regex works by defining patterns that will

quickly match specific components of an address.

Rule-based parsing is used successfully in [26] with semi-structured data, but it lacks

the flexibility required for truly unstructured address data. For example, the regex

pattern:

\$(?P<street_number>\d*)\s*(?P<street_name>[a-zA-Z\s]^)
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will successfully parse all addresses in the format <street number> <space> <street

name>, but if there are any other address formats in the data, this method will fail.

It is therefore not useful in circumstances with unstructured address data.

Hidden Markov Models

Hidden Markov Models (HMM) are a statistical method of estimating a sequence of

hidden states, given a sequence of observed events based on predefined transition and

emission probabilities.

HMMs use the following definitions:

• 𝑋 is the sequence of hidden states

• 𝑌 is the sequence of observations

• 𝑎𝑖𝑗 is the probability of transitioning from state 𝑖 to state 𝑗

• 𝜋𝑖 is the probability of beginning the sequence in state 𝑖

• 𝑏𝑗(𝑘) is the probability of emitting observation 𝑘 in state 𝑗

A set of states and observations can then be visualised like so:

Figure 3.5: Hidden Markov Model

In the context of address parsing, HMMs can be used after tokenising an unstructured

address string, treating the address feature labels as hidden states and the tokens from

the string as the observed sequence. The transition and emission probabilities can be

learned from a dataset using maximum likelihood estimation. During inference, the
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Viterbi algorithm can be used to compute the most likely labels given an observed

address [11].

HMMs are memoryless, which means that the transitional probabilities only depend

on the current state, disregarding what has come previously. This represents a short-

coming of HMMs for the purposes of modelling an address string, as addresses are

often better interpreted as a whole [11]. This is intuitive when considering numbers

in an address string. For example, numbers towards the end of the string will have

the same transition probabilities as numbers near the beginning of the string, even

though digits at this position are much more likely to represent a postcode compared

to a street number and vice versa.

Conditional Random Fields

Conditional Random Fields (CRF) are a relaxation of HMMs that allow for more

complicated sequence modelling.

There are several variations of CRFs, but all of them work by removing restrictions on

the transition matrix 𝐴 = (𝑎𝑖𝑗). This allows for states to be dependent on backward

and/or forward-looking states, as well as other observations [10].

These relaxations make fitting and inference of CRFs more complex than HMMs,

but also provide extra flexibility, which is useful in the context of addresses [10]. An

example of this is the removal of independence between observations, as it is expected

that real-world addresses will include interaction and dependencies, e.g. postcodes are

related to city names [11].

libpostal

libpostal (stylised in lowercase) is an open-source library built in C for parsing street

addresses around the world [38]. It is referenced and used frequently in the literature

[11, 10, 59], and uses CRFs to parse addresses in many different languages with 99.45%

accuracy. libpostal is trained on OpenStreetMap (OSM) data, which provides a fairly

consistent structure for all of New Zealand. There are no officially provided binaries for

libpostal, which can make installations tricky (especially on Windows). libpostal also

requires downloading large dependencies before it can be used, which limits portability.
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Normalising

Normalising is a common postprocessing step after parsing an address. This cor-

rects the formatting of the address to improve matchability to the address reference

database [43]. The implementation of normalisation therefore depends on the match-

ing algorithm and address reference database being used. However, a common step

is lengthening abbreviations for streets, e.g. st −→ street and states, e.g. NY −→ New

York.

3.3.3 Matching

Matching techniques are the core of address-matching algorithms and are a specific

case of the general entity resolution problem. The literature discusses a wide variety

of these algorithms and their applications to address matching. The composite parts

of address-matching techniques are extracted and discussed in the following sections.

Fuzzy Matching

Fuzzy matching is a simple and effective way to perform address matching. The term

‘fuzzy matching’ refers to a group of algorithms and distances for determining either

a similarity or dissimilarity score via a direct comparison of two strings. These are

generally based on an edit distance or an intersection of characters/tokens between

the two words [29].

For two input strings, 𝑆1 and 𝑆2, some of the most common fuzzy matching methods

are:

• Hamming distance [4] measures the minimum number of substitutions re-

quired to transform 𝑆1 into 𝑆2.

• Levenshtein distance [28] measures the edit distance as the minimum number

of operations required to transform 𝑆1 to 𝑆2. Edit operations include insertions,

deletions, and substitutions.

• Jaro Winkler (JW) [56] builds upon Jaro distance [23], which is based on

the number of matching characters and transpositions between 𝑆1 and 𝑆2. JW
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adds an inflation factor for having matching prefixes between 𝑆1 and 𝑆2. A JW

distance of 0 indicates a perfect match, and 1 indicates no matching characters.

• Cosine similarity measures similarity between two non-zero vectors by using

the cosine of the angle between them [50]. First, 𝑆1 and 𝑆2 are encoded as

vectors where each entry is a count of occurrences for each letter in them. The

words are similar if their encoding vectors are parallel (cos(0) = 1) and dissimilar

if they are perpendicular (cos(90) = 0).

There are a plethora of different fuzzy matching distances/algorithms beyond those

listed here. Some of these incorporate additional logic such as string alignment, weight-

ings, and other techniques to improve their performance [50]. As a result, each of these

algorithms has its own pros and cons. For example, due to character encoding, cosine

similarity does not consider the order of characters within the strings. This means that

anagrams will have a perfect match score despite potentially being different words.

Despite the wide variety of fuzzy matching algorithms, there are some common draw-

backs:

• Speed: Fuzzy matching algorithms are computationally expensive. Levenshtein

has a time complexity of 𝒪(𝑛1𝑛2), where 𝑛1 and 𝑛2 are the lengths of the two

strings being compared), which quickly becomes intractable when working with

either long strings or large datasets.

• Colloquialisms: Fuzzy matching algorithms lack the ability to identify synonyms

or abbreviations. In the case of addresses, an abbreviation of ‘High Street’ −→
‘High St.’ can significantly impact a similarity score and prevent a successful

matching.

Indexing

Indexing is used to optimise retrieval of relevant records from a database given a

search query. Indexing can also be applied to many forms of data by making small

changes to the index structure and ordering. The most applicable method for matching

addresses is called an inverted index [9]. Inverted indexing, at a high level, is extracting

tokens from records in the database and storing these as keys in the index. Figure 3.6

demonstrates this concept using words as tokens on a small address database.
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ID Address

0 Queen Street, Auckland Central

1 Queen Street, Devonport

Indexing−−−−−→

Key IDs

Queen [ 0, 1 ]

Street [ 0, 1 ]

Auckland [ 0 ]

Central [ 0 ]

Devonport [ 1 ]

Figure 3.6: Example of Inverted Index for Addresses

A query address can then be tokenised, and IDs can be looked up using the inverted

index. The most repeated ID can be considered the best match, or the top 𝑛 IDs can

be passed through to a more thorough match classifier. [9] implements a reverse index

using structured address data and creates an index for each address component. This

ensures that recommended addresses contain tokens from all address fields rather than

many matches in one field.

Reverse indexing also allows the addition of synonyms, abbreviations, place names,

etc., to addresses with no potential penalties. For example, ‘University of Auckland’

could be included in the tokens for the address ‘70 Symonds Street’; then, if the

query includes any of these tokens, the address will be returned as a potential match.

This comes at the cost of a larger index. The query process can also be extended to

allow fuzzy matching, where all keys within a maximum edit distance of the query are

returned.

This method of indexing was effectively used in the literature, but there were several

drawbacks:

• Adept at returning potential matches, but further processing is often required

to find a single best match.

• Requires expensive upfront creation of the index.

• Requires storage of a large index table.

• Index querying can be slow, but parallelisation and specialised data structures

can mitigate this.
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Blocking

Blocking is a technique used for increasing computational tractability when attempt-

ing to match a structured or semi-structured address [11]. Blocking uses an address

feature, known as a blocking key, to perform filtering using an exact match before

address pairs are fed through a matching function. This reduces the complexity from

𝒪(𝑛𝑚) to 𝒪(𝑛𝑚/𝑏), where 𝑛 is the number of addresses attempting to be matched,

𝑚 is the size of the address reference database, and 𝑏 is the number of blocks (unique

values in the blocking key column). This allows matching algorithms to scale better

when working with large datasets [10].

Blocking is an effective technique, but it relies on having a feature that partitions

datasets well. This means it must be available for most addresses, have a relatively

uniform distribution of values, and ideally have a high number of unique values. Block-

ing also relies on the key matching exactly to the reference dataset, which prevents an

address from being matched correctly if someone has entered the wrong zip code, for

example [10].

Some implementations of blocking remedy this by performing a fuzzy match with a

maximum edit distance rather than using an exact match in an attempt to capture

typos and neighbouring areas [11]. This system relies on neighbouring zip codes having

a similar value, which is not always the case depending on the country.

Vectorisation

Vectorisation is used frequently in the literature in one of two ways:

• Representation of an address as a vector

• Representation of an address pair as a vector

The most common ways these appeared in the literature were Term Frequency-Inverse

Document Frequency (TF-IDF) and similarity metrics.

TF-IDF

TF-IDF [51] is a popular method for vectorising text documents. In the case of address

matching, each address is considered a document. The process is as follows:
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1. Build vocabulary: Tokenisation must be performed on the entire database.

These tokens will be represented by an index in the vectorised representation

of an address.

2. Compute TFs: Count how many times each token appears within each address.

This is the term frequency.

3. Compute IDFs: The IDF is calculated as the natural logarithm of the ratio of

total documents to documents containing that token.

4. Compute TF-IDF score: The TF-IDF score is the product of the TF and IDF

score for each term in an address.

For example, given the address database:

𝐷 =

ID Address

0 Queen Street, Auckland Central

1 Queen Street, Devonport

Using words as tokens, the vocabulary becomes the set of all words in the database:

{Queen, Street,Auckland,Central,Devonport}

The TF-IDF representations of the addresses are then:

Queen Street, Auckland Central =⇒

⎡⎢⎢⎢⎢⎢⎢⎣
1 × 𝑙𝑛(2/2)

1 × 𝑙𝑛(2/2)

1 × 𝑙𝑛(2/1)

1 × 𝑙𝑛(2/1)

0 × 𝑙𝑛(2/1)

⎤⎥⎥⎥⎥⎥⎥⎦ ≈

⎡⎢⎢⎢⎢⎢⎢⎣
0

0

0.7

0.7

0

⎤⎥⎥⎥⎥⎥⎥⎦

Queen Street, Devonport =⇒

⎡⎢⎢⎢⎢⎢⎢⎣
1 × 𝑙𝑛(2/2)

1 × 𝑙𝑛(2/2)

0 × 𝑙𝑛(2/1)

0 × 𝑙𝑛(2/1)

1 × 𝑙𝑛(2/1)

⎤⎥⎥⎥⎥⎥⎥⎦ ≈

⎡⎢⎢⎢⎢⎢⎢⎣
0

0

0

0

0.7

⎤⎥⎥⎥⎥⎥⎥⎦
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An address query can then be converted to its TF-IDF representation, and a vector

distance calculation such as Euclidean distance or cosine similarity can then be used

to find the nearest address in the database [1].

The main strengths of TF-IDF are the numerical representation of addresses and the

importance weighting of terms based on their frequency. Its drawbacks include:

• The TF-IDF representation does not consider the order of tokens in the address

• Depending on the choice of tokens, the upfront calculation to vectorise the

database can be expensive.

• TF-IDF representations for addresses are particularly sparse, as an address string

is relatively short compared to the vocabulary size.

• Tokens from queries that are not included in the reference database are ignored.

• Does not consider colloquialisms.

Similarity Vectors

The literature also used vectorisation to represent a pair of addresses. This was most

commonly achieved by computing a series of similarity metrics for the address pair.

When these similarity metrics are computed for the Cartesian product of the query and

reference datasets, they can be treated as features for a binary or ternary classification

model to label the address pairs as match or non-match (or potential match in the case

of a ternary model). The size of these vectors varies; [10] uses Jaro-Winkler distance

on different address components for a total of 5 features, whereas [26] uses 17 edit and

token similarity metrics.

As an example, Jaro-Winkler and Levenshtein distances are used to create similarity

vectors that are two elements long. These similarity vectors can be calculated for

the query address “Beech Rd” against a simple address database, 𝐷, with only three

records:

𝐷 =

ID Address

0 Queen Street

1 First Avenue

2 Beach Road

.
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First, Jaro-Winkler and Levenshtein distances are calculated for every reference ad-

dress:

ID Jaro-Winkler Levenshtein

0 JW(Beech Rd, Queen Street) = 0.61 L(Beech Rd, Queen Street) = 9

1 JW(Beech Rd, First Avenue) = 0.31 L(Beech Rd, First Avenue) = 11

2 JW(Beech Rd, Beach Road) = 0.89 L(Beech Rd, Beach Road) = 4

.

This produces the three similarity vectors: [0.61, 9], [0.31, 11], and [0.89, 4]. These

vectors are fed through the fitted classification model, which outputs labels or match

likelihoods. In this case, it might look something like [0.2, 0.1, 0.9], where 0.9 is the

highest likelihood of a match, so the address with index 2 (Beach Road) is returned

as the match.

This combination of similarity scores and a classification model has proven to be quite

effective despite its relatively simple approach [10, 26]. However, it does have some

significant drawbacks:

• Extremely computationally expensive - most papers report that the pairwise

calculation of one similarity metric is already restrictive in terms of speed. This

approach can be significantly slower depending on the length of the vectors used

[10].

• Requires careful selection of similarity metrics to avoid highly correlated features

• Classification models are limited by similarity metrics weaknesses. For example,

since similarity metrics can not recognise abbreviations, the classification model

inherits this problem.

Embedding

Embedding is similar to vectorisation, but the representation of an address/address

pair is learned via a deep-learning model. There are many pretrained models for

word/token/sentence embedding used in the literature. These include word2vec [37],

BERT [12], and GloVe [40]. A pretrained model can be used directly to create address
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embeddings, or fine-tuning can be done to enhance the model’s fit to the desired

address reference database. Alternatively, an entirely new embedding model can be

created using a variety of deep learning models [43, 30, 32, 57, 13].

The trade-offs of these approaches are:

• Deep learning models excel at capturing sequential information and semantic

meaning. This means the embedded vectors are likely to capture much more

information than traditional vectorisation.

• Deep learning models are able to interpret colloquialisms such as street/st.

• Pretrained models offer a head start but are trained to represent a much larger

corpus of text. This means they will often have more parameters than required

to learn an address representation, slowing down training and inference.

• Training or fine-tuning a deep learning model requires a carefully crafted dataset.

Generalisability is important, so the training dataset needs to be representative

of all possible addresses. The address pairs used for training also need to bal-

ance easily discernible pairs with more difficult ones to allow the model to learn

progressively.

• Deep-learned embeddings are likely to be much larger than traditional vectors,

which increases storage and slows down inference.

Siamese Networks Siamese networks, also known as twin networks, input two or

more vectors through identical subnetwork models, producing multiple outputs/em-

beddings for comparison [7]. The loss function for the siamese network employs a

distance function such as cosine or Euclidian distance to optimise the embeddings in

a way that clusters similar addresses together. The two most common loss functions

are contrastive and triplet [17].

Contrastive loss learns from input pairs, where an input pair is labelled as 1 for

matching and 0 for non-matching [19]. The definition of contrastive loss is:

𝐿(𝑥1, 𝑥2, 𝑦) = 𝑦 ·𝐷(𝑜1, 𝑜2) + (1 − 𝑦) · max{𝑀 −𝐷(𝑜1, 𝑜2), 0}

where:
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• 𝑥1 and 𝑥2 are two inputs;

• 𝑦 is the binary similarity label (one indicating similar and zero dissimilar);

• 𝑜1 and 𝑜2 are the associated outputs inputting 𝑥1 and 𝑥2 to the subnetwork;

• 𝐷 is the distance metric to measure vector similarity (e.g. Euclidean);

• and 𝑀 is a hyperparameter controlling the minimum distance between dissimilar

pairs.

The max function ensures that the loss is zero if the distance between dissimilar pairs

is greater than the margin. This enforces a minimum separation between dissimilar

pairs by only incurring a loss if the computed distance is less than 𝑀 . This concept

is visualised for two dimensions in Figure 3.7.

Similar labels are pulled 
together regardless of margin

Dissimilar labels within the 
margin are pushed apart

Dissimilar labels outside 
of margin incur no loss

Figure 3.7: Example Effects of Contrastive Loss Function in 2D

Triplet loss learns from input triplets, where each triplet contains an anchor case, a

positive (matching) example, and a negative (non-matching) example [6]. The defini-

tion for triplet loss is:

𝐿(�⃗�, 𝑃 , �⃗�) = max(𝐷(𝑓(�⃗�), 𝑓(𝑃 )) −𝐷(𝑓(�⃗�), 𝑓(�⃗�)) + 𝛼, 0)

Where:

• �⃗�, 𝑃 , �⃗� are the anchor, positive, and negative inputs respectively

• 𝑓(�⃗�) denotes the result from inputting �⃗� to the subnetwork
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• 𝐷 is the distance metric to measure vector similarity

• 𝛼 is a hyperparameter controlling the margin between positive and negative pairs

By using 𝛼, no loss is incurred if the distance between the anchor and positive cases is

sufficiently lower than the distance between the anchor and the negative case. Figure

3.8 shows this in two dimensions.

Negative case outside positive distance 
plus margin. No loss incurred

Negative case is within positive distance 
plus margin. Loss incurred

Anchor Positive Negative Margin

Figure 3.8: Example of Triplet Loss Calculation in 2D

As triplet loss is calculated based on three inputs, it is often more robust to noisy data

and can learn to differentiate between levels of similarity. This is better when the true

similarity exists on a continuum rather than being binary. The trade-off is that triplet

loss requires more training data as one loss calculation requires three inputs instead

of two [17].

Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are a class of neural networks particularly suited

to interpreting sequential data [14]. The design of RNNs allows them to handle variable

length inputs (like addresses), and also propagates a hidden state through the layer

allowing for a ‘memory’ as shown in Figure 3.9.
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  𝑦0   𝑦1   𝑦2   𝑦𝑛

ℎ0 ℎ1 ℎ2 ℎ𝑛

  𝑥0   𝑥1   𝑥2   𝑥𝑛

ℎ𝑛 +1

Figure 3.9: Recurrent Neural Network

In Figure 3.9:

• 𝑥𝑖 represent inputs to the layer. These are typically produced via tokenisation

from the raw input address (see §3.3.1).

• ℎ𝑖 represent the hidden state passed between nodes. These values allow the RNN

to remember what it has passed over earlier in the sequence. Note that ℎ0 is

slightly different, as this is a learned parameter that does not depend on the

sequence input values.

• 𝑦𝑖 represent the outputs of the layer. These values contain information the RNN

has observed in the sequential data and are typically fed into more feed-forward

layers within the neural network before becoming labels.

Traditional RNNs suffer from vanishing and exploding gradients, which can make

training difficult. Improved architectures such as Long Short Term Memory (LSTM)

[20] and Gated Recurrent Units (GRU) [8] have been designed to mitigate these issues.

Both of these solutions implement gating to regulate the flow of information through

a cell.

Being able to carry forward information is the key strength of RNNs. Bidirectional

RNNs build on this strength by stacking RNN layers in opposing directions [46].
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Figure 3.10: Bidirectional Recurrent Neural Network

Figure 3.10 demonstrates a bidirectional RNN. In this configuration, outputs are in-

formed by previous and future information in the sequence. This is particularly rele-

vant for sequences such as addresses, which are better interpreted as a whole rather

than purely sequentially.

For example, when parsing “St Lukes Road”, the abbreviation ‘St’ could be improperly

interpreted as an abbreviation for ‘street’ when strictly reading left to right. When

using a bidirectional RNN, information from later in the address (‘Road’) is considered

when choosing a label for earlier parts of the text. This helps to prevent misinterpreting

fields in addresses with ambiguous text.

Transformers

Transformers [54] are a newer architecture in the world of deep learning and are cur-

rently the favoured model for many different applications, including language transla-

tion, sentiment analysis, and sequence-to-sequence tasks like address matching.

The defining trait of transformers is the attention mechanism within the encoder-

decoder architecture. The use of attention during the encoding of an input effectively
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reviews the entire sequence and places a weighting on certain tokens before making a

prediction [54]. This differs from RNNs, where the hidden state is propagated along

a sequence and continuously modified. This is what makes transformers adept at

handling NLP tasks as long-range dependencies are not lost.

The boy went to the dairy to buy himself an ice cream.

The boy went to the dairy to buy himself an ice cream.

Figure 3.11: Attention Lines Indicating Attention the Word ‘himself’ Gives to Other
Words in the Sequence

Figure 3.11 demonstrates how attention enables one word in the sequence to focus on

other words in the sequence regardless of their location. Due to the non-sequential

architecture, transformers utilise positional encoding to provide this information. This

ensures transformers are still able to understand the ordering of the sequence.

Classification

In the literature, classification models were used in combination with vectorisation

and embedding techniques to classify address pairs into matches, non-matches, and

sometimes also potential matches.

The most common classification models used were logistic regression, Support Vector

Machine (SVM), random forests, xgboost, and Multi-Layer Perceptron (MLP). Linear

models like logistic regression and support vector machines tend to have the lowest

performance and are outperformed by random forests, xgboost, and MLP. This is

likely due to their ability to capture non-linear relationships between features in the

address representations. MLP also has the ability to be integrated directly into a deep

learning model, which avoids sending data between multiple different models.

Classification models tend to perform well in the literature [11, 30, 59, 3, 57, 27, 26],

but they are also a computationally expensive approach. This is because they oper-

ate on some form of encoded address (embeddings or similarity vectors) and require

comparing encoded query addresses to each address in the lookup database.
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3.3.4 Data Generation

Cases were also common in the literature where no authentic human-entered addresses

were available. In these cases, a dataset was generated/augmented in order to train a

model. This process typically began with an existing, structured address dataset.

The first step in building a training dataset is determining which fields are necessary.

Fields that frequently appear in real addresses will often not be present in a structured

dataset, e.g., building names. These fields need to be generated to supplement the

existing dataset.

Once the additional features have been generated to augment the dataset, the ad-

dresses need to be converted to unstructured addresses. In order to best prepare a

model for true unstructured addresses, the following techniques were used [43]:

• Random Delimiting: The use of random delimiters to separate address fields.

The length of the delimitation may also vary.

• Field dropout: Randomly choose to withhold some features.

• Field shuffling: Shuffle the order of some fields. For example, reverse the town

and the city.

• Abbreviations: Replace common words with their abbreviations, e.g. street −→
st

• Ordinal and cardinal conversions: replace numbers with an alternative represen-

tation, e.g., 1 −→ first or 1st.

• typographical errors: Randomly insert typographical errors such as deletions,

additions, substitutions and transpositions.

Correspondence between characters in the addresses and their source fields must be

maintained to be used as a label for training parsing models. In the case of matching

models, correspondence to the source address must also be maintained.

To create a balanced dataset for a matching model, some unstructured to structured

pairs need to be non-matches. These should be created from a mix of complete address

swaps and singular field swaps [43]. This produces a training dataset with a mixture
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of reasons for addresses not matching and varying difficulties for the model to learn

progressively.

3.4 Discussion

The literature for address matching covers a good range of techniques for both parsing

and matching street addresses in many languages. While most of the literature was for

addresses with more rigorous structures than New Zealand, many of these principles

discussed are transferable.

Some gaps were identified in the literature and explored as part of this project. These

are discussed in this section.

3.4.1 Performance analysis

The majority of papers included in this survey compare accuracies for different tech-

niques. Very little analysis was performed on the speed and memory usage of the

algorithms.

[45] uses a combination of blocking, fuzzy matching, and an XGBoost classification

model and claims a matching speed of 100 million queries in 56 hours but does not

mention how many pairwise comparisons this makes. [43] implements a variety of

methods on a testing set with 1,000 rows, with the following results:

Technique(s) Time (s)

Address-wise fuzzy matching < 10

Component-wise fuzzy matching > 100

TF-IDF ∼ 40

LSTM + transformer + MLP ∼ 1 (with GPU)

An important distinction to make here is queries vs. comparisons. A single query may

be compared to an entire reference database, resulting in many comparisons. When

applied to NZ, which has approximately 2.3 m residential addresses [24], a comparison
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rate of 1,000 pairs/s equates to a matching speed of 1 every 40 minutes (assuming

a brute force approach). Experimentation with different techniques was therefore

required to balance matching speed and accuracy. This experimentation is described

in chapters 4 and 5.

3.4.2 Neighbourhood Search

Neighbourhood searching refers to the process used to evaluate potential candidates

when matching addresses. The literature discussed in this review did not cover neigh-

bourhood searching in detail, but a neighbourhood search is required in some form to

match addresses. Most of the literature used a brute force approach [44, 58, 16, 29,

10, 30, 60, 13, 11, 59, 3, 57, 27, 26, 43, 32], but blocking was also used occasionally

[11, 3, 13].

Brute force approaches tend to be simple but time-consuming. The majority of the lit-

erature required a brute force approach due to the nature of the comparison techniques

used. For example, when using a classification model to predict if two addresses are

a match or not, the query address must be paired with each address in the matching

database and fed through the classification model to produce a confidence score.

Nearest neighbour searches are a common problem in computer science, and it was

expected that some more sophisticated techniques to partition the search space in-

telligently may improve performance. Again, these are discussed in chapters 4 and

5.

After reviewing the literature on address-matching methods, a selection of algorithms

was chosen for development and testing. The selection process and implementation of

these algorithms are described in Chapter 4.



Chapter 4
Methodology

This chapter describes the implementation details of selected methods for the literature

survey in Chapter 3, as well as some new methods proposed as part of this research. All

methods are implemented as part of a Python Package hosted in the Python Package

Index (PyPI). This ensures that the final product can cater to a range of requirements.

4.1 Method Selection

The literature survey provides a good bearing on the techniques that have been success-

ful in matching addresses internationally. However, not all of these were appropriate

given the requirements for this project.

Table 4.1 includes a list of methods discovered during the literature review and a

justification for their inclusion/exclusion in this project. The table also includes com-

positional vectors, search trees, and hybrid methods, as these relate to the proposed

method and are explored in the coming sections.
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Table 4.1: Techniques Implemented

Method Included Justification

Dataset generation ✓ As a real dataset of human-entered and

validated address pairs was not available,

this had to be generated.

Parsing

CRF ✓ Conditional Random Fields were the most

promising statistical method, and lib-

postal [38] provides a pretrained model.

RNN ✓ RNNs are suitable for shorter sequences

compared to transformers and are compu-

tationally less expensive. This also pro-

vides a good comparison between statisti-

cal methods and deep learning methods.

Rules-based ✗ Rules-based parsers were not popular in

recent literature due to their inflexibility.

HMM ✗ Hidden Markov Models showed poorer

performance compared with CRF models

which are implemented.

Matching

Fuzzy matching ✓ Due to its reliability and simplicity, fuzzy

matching provides a useful baseline for

comparison.

TF-IDF ✓ As the proposed method is a form of vec-

torisation, TF-IDF provides the best com-

parison.

Similarity vectors ✗ Due to the expensive process of comput-

ing fuzzy distances for every address com-

ponent, similarity vectors are not suitable

for this project.

Compositional vectors ✓ The proposed method – described in detail

in §4.6.4.

Continued on next page
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Table 4.1 Continued from previous page

Method Included Justification

Custom embedding ✓ A custom embedding model is included

for comparison as this is the deep learn-

ing equivalent of the proposed method.

Pretrained embedding ✗ Pretrained embeddings offer a lower effort

alternative to custom embedding models,

but are designed and trained for much

more general NLP tasks which makes

them excessive for address matching.

Indexing ✗ Indexing was not frequently used in the

literature and is more appropriate for low-

volume queries with large databases.

Hybrid methods ✓ It was expected that combinations of mul-

tiple matching methods into hybrid meth-

ods could blend speed and accuracy to

produce a superior or balanced method.

Neighbourhood Search

Brute force ✓ Brute force searching offers a good base-

line for comparison with other methods.

Classification models ✓ Classification models were popular in the

literature and offer accuracy advantages

over brute force. It was suspected that the

computational requirements would be too

great for this project, but an experiment

was conducted in §5.3 to confirm this.

Blocking ✓ Blocking is implemented to measure the

trade-off between speed and accuracy

compared to brute force.

Continued on next page
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Table 4.1 Continued from previous page

Method Included Justification

Search trees ✓ Search trees were not included in the

literature for address matching, but are

described in §4.6.6 and are a common

method to improve speed of distance cal-

culations so they will be investigated here.

As the techniques in Table 4.1 are components, they are not all compatible with each

other. The techniques need to be used together in a geocoding/address-matching

algorithm to perform address matching. This chapter discusses how these techniques

are combined to create complete address-matching algorithms.

4.2 Software

Python [53] is used to implement the methods described throughout this chapter and

to build a distributable package. PyPI [15] is used to publicly host the package and

make it available for users to install.

4.3 Data Acquisition

This section details the datasets acquired for this project.

4.3.1 New Zealand Street Addresses

Land Information New Zealand (LINZ) maintains and publicly provides the New

Zealand Street Address (NZSA) dataset [24], which contains structured information

of all residential addresses in NZ, including coordinate information. An extract of this

dataset is shown in Table 4.2.
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address id address number full road name suburb locality town city gd2000 xcoord gd2000 ycoord

1132625 70 Symonds Street Grafton Auckland 174.7665433333 -36.85594495

Table 4.2: Extract of LINZ NZSA

As the NZSA contains structured information for the vast majority of NZ addresses, it

provides a good foundation for this project1. The alternative to the NZSA dataset is to

use OpenStreetMap (OSM). However, OSM data is based on the NZSA dataset, with

every address including a reference to a NZSA address ID. This presents the possibility

that OSM may contain outdated information about an address. OSM also stores the

unit, address number, and address suffix as a single field rather than separate fields,

which is less informative for matching. The NZSA is the preferred dataset for these

reasons, though it still has its drawbacks, including:

• The NZSA does not include non-residential addresses. This means that business

addresses are not geocodable via this dataset.

• The NZSA does not include postcodes. Postcodes are proprietary to New

Zealand Post and are only made available through licence. This means

postcodes cannot be looked up by matching to the NZSA and can not be used

to improve search efficiency.

• The NZSA does not include some features that are common in real-world ad-

dresses, e.g. building names, levels, etc. These features must be present in order

to train a model that will generalise well to real-world addresses.

• The NZSA does include features such as unit numbers and suffixes, although

these features are replete with blanks as they are less common among NZ ad-

dresses. This could introduce bias if the dataset is used to train a machine

learning model.

• The NZSA is clean and well-structured. While this is excellent for entity match-

ing purposes, it means that a machine learning model trained on this data may

be less generalisable to real-world addresses.

1Please note that since the time of research, the NZSA has been superseded by the New Zealand
Address [25] dataset. Several references are made to the NZSA dataset throughout this thesis as
this was the dataset used to conduct the research. The two datasets are roughly equivalent, and the
change has no impact on the research conducted.
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Solutions and workarounds for these drawbacks are discussed in the upcoming sections

of this chapter.

4.3.2 Postcode Network File

As postcodes are proprietary to New Zealand Post, there is no publicly available

dataset containing postcodes. However, New Zealand Post does maintain a Postcode

Network File (PNF), which is made available via a paid licence. This dataset includes

all postcodes in NZ and their associated polygons.

As postcodes are often useful information for address matching, a copy of the PNF

was obtained for this research. The algorithms designed as part of this project were

made to support geocoding with or without a PNF, depending on whether the user

has acquired a PNF licence. The package is not distributed with postcode data.

4.4 Preprocessing

A preprocessing module was designed to handle aspects of the address that can be

reliably corrected or removed with regular expressions. This reduces the information

present in the addresses that the models have to interpret and allows them to be

focused on the more complicated aspects within addresses. The preprocessing module

has five steps:

1. Remove NZ: As the NZSA dataset contains only New Zealand addresses, there

is no need to extract country information from addresses. Note that this is only

removed if it is present at the end of an address to avoid removing NZ from

building names, etc.

2. Remove rural delivery routes: Rural delivery routes are used by NZ Post to

improve delivery efficiency in rural areas. These are easily found with regular

expressions and, being absent from the NZSA, are not helpful for geocoding.

Rural delivery routes can, therefore, be removed from addresses.

3. Remove PO Boxes: PO boxes are also not present in the NZSA dataset and can

not be geocoded.
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4. Correct postcodes: When addresses are constructed by concatenating separate

data fields, postcodes (and sometimes house numbers) can have leading zeros

stripped (or sometimes become decimal numbers). The preprocessing module

replaces numbers in an address like 630.0 with 0630 or 630, depending on their

location in the address.

5. Clean whitespace: After all the previous steps have been applied, addresses can

become messy with multiple consecutive whitespaces due to removed elements.

Correcting this and removing leading/trailing whitespace is the final step in

preprocessing addresses.

4.5 Parsing

Two parsers were implemented for this project. The first is a wrapper for libpostal,

and the second is an RNN-based deep learning model. By providing these two methods

of parsing:

• A comparison can be made between deep learning and statistical methods for

address parsing.

• The RNN parser can be used when there is difficulty installing libpostal.

• libpostal can be used in projects where speed is critical, as it is expected to be

faster due to being a statistical method.

4.5.1 Recurrent Neural Network

Despite the literature trending towards transformer models for NLP tasks [43, 30, 32,

57, 13], an RNN was chosen to represent deep learning methods for this project for

the following reasons:

• Transformer models are typically larger than RNNs due to their attention mod-

ules. This would impact the speed criterion for this project.
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• Transformers were used in the context of address matching. Address parsing

is a simpler task that likely does not require the attention modules used by

transformers.

• The use of transformers will be available for comparison as they are used in the

address embedding model.

Labels

As the parser modules are intended to be internal modules for the package, their

primary purpose should be that the extracted features are useful for matching to

the NZSA dataset. A secondary priority is extracting other useful features from the

address that are too difficult to identify with regular expressions during preprocessing

but should not be discarded when geocoding. The labels chosen to align with these

priorities are displayed in Table 4.3.



4.5 Parsing 39

Label Description Example(s)

Blank Delimiters in the address Commas, spaces, hyphens

Building Name The name of a location at

an address

Uniservices 70 Symonds

Street

Level The floor of a building Ground floor, Penthouse, lvl 3

Unit Sublocations at an address 1/70 Symonds St, Apartment

5, Stall 2

First number The main street number of

the address

70 Symonds Street

First number suffix An alternative representa-

tion of sublocation at an ad-

dress

70a Symonds St

Second number A second number to repre-

sent a collection of dwellings

in one location

70-77 Symonds St

Street name The name of the street 70 Symonds St

Suburb/town/city Names of the area of the ad-

dress

70 Symonds St Grafton

Auckland

Postcode Postal code 70 Symonds St 1010

Table 4.3: Address Component Labels for RNN Parser

These labels align well with the NZSA dataset, which means matching algorithms

designed to follow parsing will not need to remap fields after parsing.

Dataset Generation

In order to train an RNN for address parsing, representative training data is critical.

The NZSA dataset provides a good foundation, but enhancements were necessary to

ensure the model would generalise well to real data. This involved generating extra

features from a combination of statistical methods and lookup tables (included in
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Appendix A, sourced from NZ Post[42], and Auckland Transport [52]), as well as

synthesising addresses with a random process to simulate human behaviour.

Table 4.4 shows the result of processing “70 Symonds Street, Grafton, Auckland 1010”

ten times.

ID Result Address

1 mahsa- 5th floor 1/70-75 Symonds St 6523

2 5/70a Symnds Street Grafton Auckland

3 bgo house 70b Smyonds St - Grftnn Acklnd, 8939

4 ground floor cfx wacsdid 3/70f, Symonds Street

5 70-84 Symonds Streyt , Grafton Auckland

6 shed seven 70c Symonds St

7 penthoise 70 Symonds Street Grftn Acklnd 2980

8 hhfesl lvl 3 70b Symonds St,, Grftn Adklnd

9 70f, Symonds Street

10 lot 13 70-72 Symonds St , Grafton Auckland 2641

Table 4.4: Example Addresses From Synthesisation Process

This demonstrates the variety of addresses generated from the process. This section

explains how these features are generated and combined to form addresses such as

these.

Additional Features

Three additional features are created to improve the generalisability of the model.

These are building names, levels, and a combination of suburb, town, and city.

Building names are generated from the following random process:

1. Sample the number of words to make up the building name, 𝑛, from the reciprocal

distribution, 𝑓(𝑥; 𝑎, 𝑏) = 1
𝑥[𝑙𝑛(𝑏)−𝑙𝑛(𝑎)]

. Where 𝑎 = 1 and 𝑏 = 10.

2. Let 𝐿 ∼ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(1, 10). Sample 𝑙𝑖 from 𝐿 for 𝑖 ∈ {1, 2, 3, ..., 𝑛} to determine

the length of word 𝑖 in the building name

3. Randomly sample from the set of lowercase ASCII letters to produce the words

in the building name.
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4. Select a dwelling type from a lookup table.

5. Stitch the words together with spaces.

Levels are generated from the following random process:

1. Let 𝑋1 ∼ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, 10) and 𝑋2 ∼ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, 100).

2. Sample the level number, 𝑥, from 𝑋1 70% of the time, and from 𝑋2 30% of the

time.

The final feature that is generated is suburb town city, which is generated from com-

bining the suburb locality and town city features into one. This is implemented

as many addresses in the NZSA use these fields in a syntactically equivalent way.

This could confuse the parsing model, and their distinction is often not important for

matching.

Feature Balancing

Some features are present but under-represented in the NZSA dataset. These features

are regenerated in order to produce a more balanced dataset.

• Units are sampled from an exponential distribution with 𝜆 = 10 and floored to

produce integers.

• Second numbers are generated by taking the first number and adding a random

variable sampled from an exponential distribution with 𝜆 = 10 (so that the

second number is always higher).

• Suffixes are uniformly sampled from the set of lowercase ASCII letters.

Address Synthesisation

Once all the relevant fields for addresses have been generated, they need to be synthe-

sised in a way that resembles real-world, hand-typed addresses.

The synthesisation was informed by discussions found in [26], NZ Post’s published

addressing standards [41], and professional experience working with address data and

geocoding in NZ.

The final process is the following series of 50/50 choices:
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1. Include the building name?

(a) Add dwelling type? E.g. house, building, apartment*

i. Add the dwelling type before or after the building name?

2. Include the level number?

(a) Select level type, e.g. level, floor, lvl*

(b) Select numerical, ordinal, or cardinal format? E.g. level 5, fifth floor, or

5th floor

3. Include the location on the street?

(a) Include the unit?

(b) Include the first number?

(c) Include the suffix?

(d) Include the second number?

(e) Choose appropriate separators for the resulting selection (e.g., ‘/’, ‘-’, ‘.’,

‘,’)

4. Abbreviate the street type? E.g. Road → Rd., Street → St.*

5. Include the suburb/town/city?

(a) Abbreviate the suburb/town/city? This is achieved by removing vowels.

6. Include the postcode?

The components were then stitched together with randomly selected delimiters to form

a complete address. Steps marked with * reference a lookup table; these are included

in Appendix A.

Typos were then applied using a rate of 0.4% per character. The types of typos applied

were:

• Substitution: A character is replaced with another that is nearby on a qwerty

keyboard.

• Transposition: A character is switched with one of its neighbours.
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• Duplication: A character is repeated by inserting a duplicate.

• Deletion: A character is removed from the address string.

The probability of typos was chosen to be 0.4% as the average length of addresses

in the NZSA is 35 characters. 35 × 0.004 × 4 gives an expected number of typos per

address of 0.56. This expectation produced a dataset that is well balanced between

no typos, a single typo, and multiple typos.

As shown in Table 4.4, this process produces a variety of training addresses with

known labels. This variation also serves as a form of regularisation for the model and

prevents overfitting due to the extra noise included.

RNN Model

This section describes the generic structure of the RNN-based model used. Experi-

mentation with exact model hyperparameters is described in §5.1.

The model uses character-level encodings, a bidirectional LSTM, and feed-forward

layers ending in a softmax activation to represent label probabilities. The structure

of the full parsing model is shown in Figure 4.1.

Figure 4.1: Structure of the RNN Parser Model
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Encoding Layer

The encoding layer replaces tokens with their index in the vocabulary. This allows the

lookups for the embedding layer to use integers rather than tokens, making compu-

tational and memory efficiency gains. Unigrams were used as tokens for encoding to

keep the vocabulary size as small as possible and remove the risk of out-of-vocabulary

errors when a new word is encountered at inference time.

Embedding Layer

This layer learns a vector to represent each character. This enables the model to form

a ‘meaning’ for each character.

Bidirectional LSTM Layer

A bidirectional layer of LSTM cells is used to learn sequential information in the

address. This means there are two layers of LSTM cells stacked in opposing directions,

which allows the model to use information from both ends of a sequence to inform its

outputs.

Feed-Forward Layers

The feed-forward layer uses neurons to condense the sequential information from the

RNN. This is followed by another dense layer with 10 neurons (the number of labels),

with softmax activation to produce a multinomial probability distribution for the

output.

The outputs can then be interpreted as a confidence score of a particular character

belonging to the corresponding labels. This is visualised in Figure 4.2.
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Figure 4.2: RNN Model Outputs



4.5 Parsing 45

Training

The model is trained using PyTorch, a cross-entropy loss function, the Adam optimiser,

and a 0.0001 learning rate.

Cross entropy loss is calculated for each character as:

𝐿𝐶𝐸 = −
∑︁
𝑖

𝑡𝑖 𝑙𝑛(𝑝𝑖)

,

where 𝑡𝑖 is the truth label for the 𝑖th class (one 1 and the rest 0), and 𝑝𝑖 is the softmax

probability for the 𝑖th class. Therefore, this loss function encourages the model to

maximise the probability of the true label for each character.

Postprocessing

Several postprocessing steps were developed to clean the outputs. These are intended

to prevent error propagation by removing obvious mistakes made by the model or to

improve the output for subsequent steps in the address-matching algorithm. These

steps are:

• Street type normalisation: Street types are normalised from a lookup table

included in Appendix A.

• Number normalisation: Cardinal and ordinal forms of numbers are converted

to their integer representations, e.g. 1st or first −→ 1. This is applied to levels

and units.

• Number correction: Non-digit characters are removed from fields that should

not have them, e.g. street numbers, level, and postcode.

• Postcode correction: Non-digit characters are removed from postcodes. If the

postcode is not four digits long, it is removed.

These postprocessing steps allow a parsed address to be used more effectively by

subsequent matching models. Table 4.5 shows how a parsed address is more useful
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after postprocessing to matching algorithms as the numerical values are correctly

represented as integers, and the erroneous postcode has been removed to prevent

poor matching.

Address Component After Parsing After Postprocessing

level third floor 3

unit 5th desk 5

street number 70 70

street name Symonds Street Symonds Street

postcode 101 None

Table 4.5: Postprocessing for “third floor, 5th desk, 70 Symonds Street, 101”

4.5.2 libpostal

As libpostal already provides a comprehensive address parsing system using CRFs,

a statistical method for address parsing was not implemented. Instead, bindings for

libpostal are provided. Since libpostal is trained on global OSM data, postprocessing

is applied to make the parser outputs more applicable to NZ addresses.

Firstly, the house number field needed to be converted. libpostal groups all fields

related to the street number into one string. The matching methods that utilise

parsing will benefit from having these fields separated.

House Number Unit Street Number Suffix

70 70

1/70 1 70

70a 70 A

Apartment 1-70b 1 70 B

Table 4.6: House Number Field Splitting Requirements

Table 4.6 demonstrates some of the conversions that are required. Regex is used to

achieve this splitting via the following steps:
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1. The house number field is split into digits and non-digits (does not include

delimiters).

2. For the digits, if there is one group, this is treated as the street number. If there

are more than two groups, the first is treated as the unit number, and the second

is the street number.

3. For the non-digits, the first group of length one is treated as the suffix.

The aforementioned conversions are made, and the original house number field is

retained for debugging purposes.

The remaining labels from libpostal are mapped to their equivalents from the RNN

parser. As libpostal is designed to handle addresses in many different countries and

languages, several of these labels are either not relevant for NZ or unhelpful for address

matching, e.g., state district and near. These fields are removed during the mapping

process. The complete field mapping is demonstrated in Table 4.7.
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libpostal Label Mapped Label

House Building

Near -

House number Unit, first number, and suffix

Road Street name

Unit -

Level Level

Staircase -

Entrance -

PO box -

Postcode Postcode

Suburb Suburb town city

City district Suburb town city

City Suburb town city

Island Suburb town city

State district -

State -

Country region -

Country -

World region -

Table 4.7: Mapping Table for libpostal Address Labels

The postprocessing module described for the RNN parser is then applied to the outputs

of libpostal, completing the parsing process and preparing the addresses for matching.

4.6 Matching

This section describes the implementation of address-matching algorithms—those that

take either an unstructured or parsed address and return a most likely match from a

reference database.

Matching algorithms typically convert addresses to a numerical representation before

performing a distance calculation or nearest neighbour search (NNS) to find the best

match. Numerical address representations are often compatible with multiple neigh-
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bourhood search methodologies. These are detailed in Table 4.8. Note the inclusion

of search trees, which, as mentioned previously, were not mentioned in the literature.

Search trees were explored here as it was suspected they could provide significant

speed benefits when address matching.

Matching Method Parser Compatible NNSs

Fuzzy (address-wise) ✗ Brute force

Fuzzy (component-wise) ✓ Brute force & blocking

TF-IDF ✗ Brute force, classification & search trees

Embedding vectors ✗ Brute force, classification & search trees

Compositional vectors ✓ Brute force, classification & search trees

Similarity vectors

(address-wise)

✗ classification

Similarity vectors

(component-wise)

✓ classification

Table 4.8: Matching Methods and Associated Neighbourhood Searches

Where possible, subsections for matching methods cover the address representation

process, and §4.6.6 covers the general application of nearest neighbour searches to all

representations. Where this is not possible, the nearest neighbour search method will

be described within the address representation subsection.

4.6.1 Address-Wise Fuzzy Matching

Address-wise fuzzy matching is the process of using a string similarity metric to com-

pare a query address with every address in the lookup database. It is a popular

method in the literature and was expected to offer a good baseline performance when

analysing other approaches.

The normalised InDel distance was used as the similarity metric. This is a variation

on Levenshtein distance that only allows for insertions and deletions (substitutions

require an edit distance of two). It was chosen as there is a fast implementation

(described in [21]) in C++ available through the Python package RapidFuzz [35].

The InDel distance also considers the order of characters in the two strings. Recall
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that this is important as NZ contains many anagrammatical streets, which would not

be distinguishable without character-ordering information.

Address-wise fuzzy matching applies the normalised InDel distance to the Cartesian

product of query addresses and reference addresses without applying any parser. This

is the equivalent of a brute force search and is considered a naive and computationally

expensive approach.

During the implementation of this approach, it was noted that the average query time

per address exceeded five seconds. This speed is not tractable for larger datasets and

does not align with the goals of this project. Therefore, address-wise fuzzy matching

was abandoned in favour of component-wise fuzzy matching.

4.6.2 Component-Wise Fuzzy Matching

By making use of a parsed address, address-wise fuzzy matching can be improved

by applying the distance function to individual components of the address and their

counterparts in the NZSA dataset.

The use of a parser also allows for a variation of blocking to be applied in an iterative

approach to continuously reduce the search space. In this variation, filters are applied

at each stage in the search to reduce the search space for later steps. There are two

kinds of filter steps:

• Exact filters: These filters require an exact match to the search term, e.g., all

addresses where the street number is not 70 are removed.

• Fuzzy filters: These filters calculate a similarity score using the normalised InDel

distance; scores below a threshold (default 60%) are removed.

Checkpoints are implemented to combat problems with exact filters removing the true

address match when typos are present. These checkpoints will reset the search and

use fuzzy filters in place of exact filters when no addresses are found.

At the end of the filtering process, a weighted similarity score is calculated based on

the importance of each field. If there are no strong contenders remaining, a NoneType

is returned. The process is visualised in Figure 4.3.
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Figure 4.3: Component-Wise Fuzzy Searching Process

This process allows the matcher to iteratively reduce the search space, focusing on the

most likely matches while still being robust to typos in important fields such as the

number or postcode.

From inspection of the NZSA dataset, it is clear that the suburb/town/city field is

the most difficult to match. This is due to the fields in this feature being commonly

repeated. For example, ‘Auckland Central, Auckland’, where a human typically writes

‘Auckland’ or ‘Auckland Central’, but not both. Or colloquial and non-standard terms

for suburbs being used. To combat this, matching on the suburb is performed later

in the process, and less weight is assigned to this match score. In practice, this often

results in the matcher finding the best matching suburb for a street name that appears

in many different suburbs but also allows the matcher to choose a less favourable street

in preference of a significantly well-matching suburb.
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4.6.3 TF-IDF

TF-IDF uses a vocabulary of tokens to calculate an importance score for each token

based on their frequency in the reference database. Queries are then encoded using

these importance scores, and a vector distance calculation is performed to find the

closest address.

Hence, TF-IDF is highly dependent on the selected vocabulary. Using words leads

to an extremely large vocabulary, so tokens will be used instead. Using an alphabet

of lowercase ASCII characters, digits, and the space character, the total number of

unique characters used to form tokens is 37.

Bigrams are used as tokens in this implementation, as using either unigrams or tri-

grams would not be suitable for this project due to the following:

• Using unigrams means each individual character from the vocabulary is used as

a token. This means that anagrammatic addresses in the reference dataset will

be encoded to identical vectors and will not be able to be matched correctly.

Recall that the use of Te Reo Māori in NZ street names is common. As Te Reo

Māori contains only 15 letters (including two digraphs), anagrammatic streets

are much more likely to be present in NZ addresses. For this reason, unigrams

are not suitable for this project.

• Using bigrams mostly solves anagrammatic issues. Order is not truly considered,

but it would take an extremely contrived example to be problematic. For ex-

ample, Tamarata Street and Taramata Street contain exactly the same bigrams,

just in different orders. While inspection of the NZSA dataset confirmed there

were no cases of this, it is also likely that these streets would appear in different

areas, providing some distinct bigrams in their vector representation.

Bigrams are, therefore, the minimum viable n-gram size. This conceptually

small change has a large impact on efficiency. However, with the vectorised

representation of each address increasing to be 372 = 1369 elements long. Using

vectors this large with the similarity metrics required by TF-IDF begins to slow

down the inference speed as each lookup address needs to be compared to the

roughly 2 million addresses in the NZSA dataset. It also requires the use of a

sparse matrix, as most computers will not be able to hold the dense array in

RAM.
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• Using trigrams increases vector lengths to be 373 = 50, 653 elements long, re-

sulting in a number of calculations per lookup address that is not feasible within

the goals of this project.

4.6.4 Compositional Vectors

Compositional vectors (the proposed method) uses a similar approach to TF-IDF but

aim to utilise positional information of characters to reduce the length of vectors,

improving inference time while still preserving accuracy.

The design of vectors for this module was a challenging task, and many different

methods were explored before the final method was chosen. The key requirements for

the vectorisation method were:

• Uniqueness: In order to preserve the uniqueness of addresses, vectors had to

be checked for collisions. This is when two different addresses are encoded to

an identical vector during the vectorisation process. This must be avoided, as

the search will not be able to determine a unique match if many addresses are

mapped to the same vector.

• Similarity: The vectorisation process must map addresses to a unique n-

dimensional vector, but it also must contain and represent enough information

about the addresses that semantic and structural similarities are preserved in

the distance between the vectors. That is, similar addresses such as Symonds

Street and Simmonds Street should have vectors that are near each other in the

vector space.

• Speed: As every address searched will need to be encoded, the process to do

this should be simple enough so as not to dominate the overall search time. This

means relying on simple rules.

• Cardinality: The length of the address vectors should remain as low as possible

to keep the distance calculations fast.

Vectorisation

At a high level, the compositional vectors are formatted like:



54 Methodology

address =

⎡⎢⎢⎢⎣
street number information

street name information

regional information

postcode information

⎤⎥⎥⎥⎦ ,

where different components may or may not be included depending on their avail-

ability in the address. This leads to embedding vectors of several different lengths.

Each component of the address has an individual vectorising function, which typically

consists of a rule to convert text to numbers, a transformation function to control the

range of values, and a weight/multiplier to represent the importance of the label. The

components considered are the house number, street name, suburb/town/city, and

postcode.

House Number

The house number segment contains three values:

• Unit: Digits in the unit are summed to give a single value and then logged,

giving a range between approx. 0 and 2

𝑙𝑜𝑔
∑︁
𝑖

𝑑𝑖

where 𝑑 is the set of digits in the unit.

• First number: The street number is shifted and then logged, giving a range

between approx 1 and 3

𝑓(𝑥) = 𝑙𝑜𝑔10(𝑥 + 10).

• Suffix: The normalised ASCII value of the unit. E.g. A or a = 1/26.

Street name

The street name segment contains 29 values. One for each letter of the alphabet plus

a space character, then a digit entry and a length entry.

The first 27 entries in this segment are calculated as the length-normalised geometric

mean of character indices (beginning at 1 to avoid multiplying with 0), excluding

the corresponding letter/space. This segment represents the positional distribution
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of letters within the street name. Any digits in the street name are logged for scale

and included in a separate digit entry. This allows the vectors to differentiate between

streets, such as ‘12th Street’ and ‘21st Street’, which are identical except for the digits.

The length entry is the natural log of the string length.

The geometric mean is an average that uses the product of a set of numbers, as opposed

to the arithmetic mean, which uses the sum.

𝑔𝑚(𝑥) =

(︃
𝑛∏︁

𝑖=1

𝑥𝑖

)︃ 1
𝑛

= 𝑛
√
𝑥1𝑥2 · · ·𝑥𝑛

The geometric mean is used over the arithmetic mean due to its skewed nature. There

are multiple ways to arrive at the same result using the arithmetic mean, e.g. �̄� = 5

for 𝑥 = {4, 6} and 𝑥 = {3, 7}. This is not true for the geometric mean, 𝑔𝑚(4, 6) ≈ 4.9

and 𝑔𝑚(3, 7) ≈ 4.6.

This property produces reliably unique numeric representations for the street names.

The geometric mean can also be calculated using logs, which is much more efficient

by avoiding iterative calculations or integer overflow when calculating the product:

𝑔𝑚(𝑥) = 𝑒
1
𝑛

∑︀
𝑖 𝑙𝑛𝑥𝑖

Finally, the values are scaled down by the length of the string. This gives a range of

values invariable to the length of the string, and the vectors represent the ‘shape’ of

the word being vectorised. For example, the word “glade” would be vectorised like so:

glade −→

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

indices of non-a characters

indices of non-b characters

indices of non-c characters

indices of non-d characters

indices of non-e characters

...

digits entry

length entry

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑔𝑚(1, 2, �3, 4, 5)

𝑔𝑚(1, 2, 3, 4, 5)

𝑔𝑚(1, 2, 3, 4, 5)

𝑔𝑚(1, 2, 3, �4, 5)

𝑔𝑚(1, 2, 3, 4, �5)

...

−1

𝑙𝑛(5)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
≈

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2.51

2.61

2.61

2.34

2.21

...

−1

1.61

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
≈

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.502

0.522

0.522

0.468

0.442

...

−1

1.61

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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The notable benefits of constructing vectors in this way are:

• Independent letter distribution and length representation. This means that in-

sertion or deletion typos near the beginning of the word do not disproportionately

affect the representation.

• Non-sparse vectors are resistant to typos due to the flipped index averaging.

This works as the address strings are short. If this were applied to longer texts,

then the non-inverted indices should be used.

• Semantic preservation.

• Low range of values for consistent scaling during the weighting step.

• Short vectors enabling fast comparisons.

• Retention of digits and their value.

• Simple rules for fast computation.

Suburb/Town/City

Suburbs, towns, and cities are encoded using the same process as street names. They

are encoded separately to ensure a better representation, as the inverted index ap-

proach works best on short strings. This also allows a lower weight to be assigned to

this value, similar to as discussed in the fuzzy §(4.6.2).

Postcode

The postcode is divided by 9999.

Weightings

After all the transforms have been applied, weightings are applied by scaling each

component of the address. Unit and suffix values are assigned a low weight by multi-

plying of 0.1. Whereas the first number and street name are assigned high weights of

50 and 100, respectively.

This means that during a distance calculation such as cosine or Euclidean, importance

is implied for each component. This allows the algorithm to place more importance on

fields such as the number and street name, compared with fields like unit and suffix,

which should only be used as tiebreakers between matches.
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4.6.5 Address Embedding

Deep learning techniques can be used to create a vectorised representation of addresses

with semantic preservation. These are called embeddings. This is essentially the deep

learning equivalent of the compositional vectors approach discussed in the previous

section.

Dataset Generation

In order to train this deep learning model, the NZSA needed to be augmented and

transformed in a similar way to the training data for the RNN parser in §4.5.1. The

two common loss functions for training an embedding model are contrastive and triplet

loss (see §3.3.3). The performance of these two loss functions can vary depending on

the data. A dataset of triplets was generated, as this can easily be reused as pairs for

contrastive learning.

Each row in the dataset contains an anchor, positive, and negative case. These triplets

were constructed with the following considerations:

• If the triplets are too easy, the model will not fully learn what constitutes a

different address.

• If the triplets are too hard, the model will not be able to learn progressively.

• The dataset should support the model’s generalisability by including typos and

other errors.

The anchor address is taken directly from the NZSA, and positive cases are generated

following a similar process to the one described previously in §4.5.1. They are made

beginning with raw address components, which are then stitched together with random

dropouts, and typos are applied to create a pair of edited but still matching addresses.

The negative cases are generated with a mix of two methods. Twenty percent of the

time, negatives are generated by randomly selecting another address from the positive

column. The remaining eighty percent of negatives have one of the following edits

made, chosen with equal probability:
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• unit/number/suffix change;

• street type change;

• street name change; or

• suburb change.

This process generates a dataset composed of 20% easy triples and 80% hard triplets.

This balance was intended to provide the embedding model with a sufficient quantity

of obvious examples to not stall learning but also include enough difficult addresses

that the embeddings will generalise well when applied to real data.

After the address triplets were generated, they were split into pairs of (anchor, pos-

itive) and (anchor, negative), with labels of 1 and 0, respectively. These were then

concatenated and shuffled to produce a second dataset that can be used with con-

trastive learning. Tables 4.9 and 4.10 include some examples of the training data

generated.

Positive Negative

70 Symonds St, Gradton 321 Oteha Valkey Road, Albany

70 Symonds Street 1010 70 Symonds St, Christchirch

70 Symnods St 1010 25 Symons Street, Grafton, 1010

70 Symonds Street, Grafton 1010 16 Western Springs Rd, Morningside

Table 4.9: Example Training Triplets Generated for Anchor Address “70 Symonds
Street, Grafton 1010”

Address 1 Address 2 Label

70 Symonds Street, Grafton 1010 321 Oteha Valley Road 0

70 Symonds Street, Grafton 1010 70 Symonds St, Gradton 1

70 Symonds Street, Grafton 1010 70 Symonds St, Christchirch 0

70 Symonds Street, Grafton 1010 70 Symonds Street 1010 1

70 Symonds Street, Grafton 1010 25 Symons Street, Grafton, 1010 0

70 Symonds Street, Grafton 1010 70 Symnods St 1010 1

70 Symonds Street, Grafton 1010 16 Western Springs Rd, Morningside 0

70 Symonds Street, Grafton 1010 70 Symonds Street, Grafton 1010 1

Table 4.10: Example Triplets Converted to Training Pairs for Contrastive Loss
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Tables 4.9 and 4.10 demonstrate the variety of addresses generated by this process.

It also verifies that the training data contains a mix of easy and difficult triplets as

intended.

Transformer Encoder Model

To successfully create an address embedding, the embedding model must create a

compressed (encoded) representation of the address as a vector. This vector must

preserve the semantic and structural meaning of an address and represent it in such a

way that similar addresses are near each other in the vector space.

This is a more complicated task than the previous RNN-based deep learning model

that was trained for parsing. Hence, a transformer-based approach was chosen, as

the attention modules support this form of encoding. Other than this, the approach

to designing the address embedding model was similar to the RNN parsing model,

described in §4.5.1.

Note that due to the extra complexity of a transformer-based model, more experimen-

tation with model hyperparameters was required (this is covered in §5.2). The generic

structure of the models experimented with was:

• Encoding layer: Translates input tokens to a dense encoded vector based on

predefined vocabulary.

• Embedding layer: Learns embeddings for each token in the vocabulary. These

allow the model to form a meaning behind each token.

• Transformer encoder layers: Applies attention matrix to the sequence of tokens.

This takes the variable length input and translates it to a fixed length sequence

while considering each pairwise combination of tokens to understand meaning.

• Feed-forward layers: Uses neurons with activation layers to transform the en-

coding to have a predictable range of values.
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Transformer encoder 
layers

Feed-forward layer
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Address characters

Encoding layer

Embedding layer

Figure 4.4: Architecture of the Transformer-Based Address Embedding Model

The model is visualised in Figure 4.4. Note the following:

• Unigrams are used as tokens for simplicity in this diagram. Other token sizes

were experimented with and could equivalently be shown here.

• Layers preceding the transformer encoder layers are variable length, and layers

after the transformer are fixed length.

• The transformer encoder layers are visualised as green boxes. Each layer depends

on all input tokens and feeds into each entry in the output. Experiments were

not restricted to two transformer encoder layers.

• Output values are controlled to be between 0 and 1 by the feed-forward activation

layer.
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Training

The model is trained using PyTorch. Tests were conducted using the Adam optimiser

for both triplet loss and contrastive loss, with various learning rates.

Batching was implemented to improve training and inference speeds. This requires

padding of input vectors within a batch to create equal-length vectors for batch pro-

cessing. Padding values used are outside of the model vocabulary and are masked out

to avoid affecting calculations made inside the model.

4.6.6 Nearest Neighbour Searching

Nearest neighbour searching is an important part of address matching, as it determines

how the selected algorithms are applied. This is often where significant computational

expense is incurred if the entire address database has to be processed.

Some of the algorithms described in this chapter require a certain nearest neighbour

search. For example, component-wise fuzzy matching requires blocking over brute

force due to the computational effort required and is not compatible with search trees

as the fuzzy distance functions require raw strings. However, the proposed composi-

tional vectors and address embedding models do not have this restriction.

As there was not much information available in the literature for different neighbour-

hood searching algorithms, this project explored the options available. This section

describes the search algorithms considered and how they are applied to vectorised

representations of addresses. Due to the precision needed when geocoding, only ex-

act nearest neighbour methods were considered. Approximate methods also exist and

are often faster, but these are not guaranteed to return the true nearest neighbour

and would result in incorrect address matches. See §5.3 for the experimental results

comparing these methods.

Brute Force

Brute force takes the Cartesian product of query addresses and NZSA, then performs

a distance calculation. For vectorised addresses, there are two possible approaches:
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• Vector distance: Euclidean and/or cosine distances are used to compute a

vector distance score.

• Classification model: A classification model can be trained to compare the

vectors and predict a label. This incurs extra overhead on an already computa-

tionally expensive approach, so it was not explored for this project.

Search Trees

Search trees spatially index n-dimensional data in order to intelligently navigate the

search space. The intuition of a search tree is that for a query, 𝑞, if 𝑞 is far from a point

𝑎, and 𝑎 is known to be near 𝑏, then the distance between 𝑞 and 𝑏 is not calculated.

This avoids having to compare every pair of addresses as in brute force algorithms,

though search tree performance can vary depending on the dimensionality of data, as

well as the number of data points [2, 22].

KD Tree

KD (K-Dimensional) trees use a binary tree structure to partition data recursively,

where K refers to the dimensionality of vectors being organised. This data structure,

combined with a traversal algorithm, guarantees an exact nearest neighbour search

rather than an approximate nearest neighbour search.

While there are many variations for constructing a KD Tree, they all loosely follow

the below process:

1. Choose a starting dimension. This is often the first dimension, but it could be

randomly selected or chosen to be the dimension with the largest variance, etc.

2. Generate a splitting hyperplane, e.g. the median of the chosen dimension.

3. Divide data points into each half-space generated by the splitting hyperplane.

4. Select the next dimension. This can simply be the second dimension or selected

by another criterion.

5. Generate a new splitting hyperplane in this dimension for each half-space gen-

erated by the previous split.



4.6 Matching 63

6. Repeat until a stopping condition is met. For example, a maximum depth,

minimum size of leaf nodes, etc.

This is demonstrated for 2-dimensional (𝑥, 𝑦) vectors like so:

For the set of points:

𝑃 = {(1, 9), (2, 3), (3, 7), (4, 1), (5, 4), (6, 8), (7, 2), (7, 9), (8, 8), (9, 6)}

Beginning with the first dimension, 𝑥, and all points, calculate the median:

𝑥1 = median(𝑃 ) = 5.5

Separate points into two half-spaces 𝑃𝑥1 and 𝑃𝑥2:

𝑃𝑥1 = {(1, 9), (2, 3), (3, 7), (4, 1), (5, 4)}, 𝑃𝑥2 = {(6, 8), (7, 2), (7, 9), (8, 8), (9, 6)}

Generate splitting hyperplanes in the second dimension, 𝑦, for each set:

𝑦1 = median(𝑃𝑥1) = 4 𝑦2 = median(𝑃𝑥2) = 8

𝑃𝑥1 and 𝑃𝑥2 are then separated into half-spaces based on these values. At this point,

the space can be visualised as:
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Figure 4.5: 2D Space Partitioned by KD Tree After Two Iterations

with a corresponding KD tree of:

𝑥 = 5.5

𝑦 = 4

(2, 3), (4, 1) (1, 9), (3, 7), (5, 4)

𝑦 = 8

(7, 2), (9, 6) (6, 8), (7, 9), (8, 8)

At this point, the tree can continue to grow by splitting each leaf node on the 𝑥

dimension again, or it can exit as all the leaf nodes contain sufficiently few points.

When querying the KD tree to find an exact nearest neighbour, a comparison is made

against each level in the tree to find which leaf node the query vector belongs in. To

ensure there are no closer points, the traversal needs to backtrack by checking there

are no hyperplanes closer than the closest point within the leaf node; if there are, then

these must also be explored to guarantee an exact nearest neighbour is found.

KD Trees have an average-case time complexity of 𝒪(log 𝑛), and a worse-case of

𝒪(𝑛). For high-dimensional data, the curse of dimensionality can result in worst-case
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performance due to the increasing sparsity of the data. Exact performance is highly

dependent on the data, and since our vectors are often dense and have small distances

between them, a KD Tree implementation was tested for this project.

Ball Tree

Ball trees were designed to address the problems KD Trees have with higher dimen-

sions. Instead of using hyperplanes, ball trees partition the data using a series of

nested hyperspheres. This results in an increased construction time for the tree but

improved query performance as only a single calculation between the query and the

hypersphere centroids can give an upper and lower bound for all points contained in

the hypersphere.

As with KD trees, exact performance is dependent on data. For this reason, ball trees

were tested for comparison to KD Trees in §5.3. As ball tree was not selected for the

final implementation, this section is kept brief.

4.6.7 Hybrid Methods

This chapter has discussed four approaches to address matching, they are:

• component-wise fuzzy matching;

• TF-IDF;

• compositional vectors; and

• address embedding.

As mentioned previously in §4.6.6, the compositional vectors and address embedding

model approaches are not restricted to brute force searches. For this reason, it was

expected that these methods would be significantly faster.

Both of these approaches also rely on compressed representations of the addresses,

whereas fuzzy matching and TF-IDF both use raw information to measure similarity.

This is likely to cause a reduction in accuracy and/or reliability.

Hybrid approaches use vectorised models to find 𝑘 nearest neighbours, which are then

passed to a raw method (fuzzy or TF-IDF), and may improve matching speed while
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maintaining the accuracy and reliability of the raw methods. The exact implemen-

tation of a hybrid approach will depend on results from experimentation of nearest

neighbour searches. As such, hybrid methods are discussed further in §5.4.

This concludes the Methodology chapter of this thesis. The next chapter (Experimen-

tation) covers the experiments conducted to fine-tune the implemented methods.



Chapter 5
Experimentation

5.1 RNN Parser

The RNN parser includes some hyperparameters that affect the model’s overall per-

formance. In order to produce a parsing model that balances speed with accuracy,

combinations of these hyperparameters were tested with a shortened training loop to

shortlist promising models. Once the final model was selected, it was trained on the

full dataset, and the model weights were saved within the Python package.

5.1.1 Grid Search

A grid search was conducted to search the hyperparameter space. Each model config-

uration was trained up to 2000 batches (128 batch size) to give an initial indication

of the configuration’s learning ability. Table 5.1 includes a list of all hyperparameters

searched.
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Hyperparameter Values

Character embedding depth 4, 8, 16, 24

LSTM units 32, 64, 128, 256

LSTM layers 1, 2

Hidden feed-forward layers 0, 1, 2

Table 5.1: RNN Parser Hyperparameter Grid Search

After training, the character accuracy (percentage of characters correctly classified),

address accuracy (percentage of addresses with all characters correctly classified), and

training iterations per second were calculated using a test dataset of 100,000 unseen

addresses. Tables 5.2 and 5.3 include a sample of models trained in the grid search

and the resulting scores.

Model ID Character Accuracy (%) Address Accuracy (%) It/s

A 99.33 91.44 4052

B 99.61 94.34 4321

C 99.60 94.34 2930

D 99.67 95.27 3223

E 99.63 95.01 2862

F 99.63 95.04 3500

G 99.71 95.84 821

Table 5.2: Sample of Grid Searched Model Performances

Hyperparameter A B C D E F G

Character embedding depth 4 8 8 16 16 24 24

LSTM units 32 64 128 64 128 64 256

LSTM layers 1 1 1 1 1 1 2

Hidden feed-forward layers 0 0 0 1 1 1 1

Table 5.3: Sample of Models Made for Grid Search

As expected, the smallest (A) and largest (G) models proved to be the least and most

accurate, respectively. However, the range of accuracy scores is very small, with Model
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A scoring an address accuracy of 91.44% and Model G scoring 95.84%. The range of

speeds, however, is much larger, approximately a factor of five. Of the top-performing

models, accuracies were all between 95% and 96%.

The top-performing models also had the longest character embeddings. This indicates

that the LSTM layers were able to successfully learn the sequential patterns sufficiently

well using the smaller size of 64 units. The most efficient gains for the model are,

therefore, in the character embedding depth and the hidden feed-forward layers. Model

F was selected for further training, as this provides the best combination of speed and

accuracy from the explored configurations.

This logic is confirmed by inspecting the training loss graphs for the models, shown in

Figure 5.1, which shows that increasing the model complexity improved the learning

speed but plateaued to roughly the same loss.

Figure 5.1: Training Loss for Grid Searched Models

5.1.2 Selected Model

Model F was then trained for a full epoch (approx. 14,000 steps) of the training data,

using a scheduled learning rate. The final accuracy scores were 99.84 for character

accuracy and 97.57 for address accuracy.
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5.1.3 Model Inference

An example result from this model for the address “3rd floor 18 viaduct harbour rd”

can be visualised as a heatmap (Figure 5.2) using the outputted softmax probabilities

for each character. This demonstrates the model’s confidence in parsing each character

in the address.

Figure 5.2: Softmax Probabilities/Predictions for Example Input Address

5.2 Address Embedding Model

As with the RNN parsing model, the address embedding model includes several hy-

perparameters that are expected to affect the model’s accuracy and speed. Table

5.4 includes a list of the hyperparameters for the embedding model and associated

potential values.
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Hyperparameter Values

Tokens Unigrams, bigrams, trigrams

Token embedding size 8, 16, 32

# attention heads 2, 4, 8

# transformer layers 1, 2, 4

Hidden dimension 64, 128, 256

Output dimension 32, 64, 128

Table 5.4: Address Embedding Model Hyperparameter Values

To understand the effects of each hyperparameter, four initial models were trained for

a short time (approx. five minutes). Table 5.5 describes the parameters used for each

model.

Hyperparameter A B C D

Token embedding size 8 16 32 32

# attention heads 2 4 8 8

# transformer layers 1 2 2 4

Hidden dimension 64 128 128 256

Output dimension 32 64 128 128

Table 5.5: Address Embedding Models Tested

These models were initially trained on the triplet loss dataset. During this training, it

was observed that the training loss of each model was plateauing earlier than expected.

Figure 5.3 includes a screenshot taken from TensorBoard (software for tracking learn-

ing progress). The screenshot shows training loss over time for a selection of models,

as well as some key stats for each training run. Note that “Model A - bigrams -

triplets” refers to a training run using Model A, training with bigrams as tokens, and

using triplet loss.
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Figure 5.3: Training Loss (Triplet) for Address Embedding Models

The training loss curves show that each variant of the model faced a ’hump’ at training

losses of around 0.5. This is explained by the margin used for triplet loss, which was

set at 0.5. As expected, the larger model sizes demonstrate the ability to learn faster.

This is shown by the steeper curves as training begins. However, each model seems to

plateau around the same loss value of slightly over 0.2. There also seems to be little

difference between the use of unigrams, bigrams, and trigrams as tokens. Smaller

models also complete more steps in the same timeframe, as expected.

The loss curves also show a large amount of variation between batches. This is likely

due to the mixing of hard triplets described in §4.6.5. For an embedding model to

work successfully for address matching, loss values are required to be much nearer to

zero. As triplet loss did not appear to be providing the results needed, contrastive

loss was also tested.

Figure 5.4: Training Loss (Contrastive) for Address Embedding Models
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Figure 5.4 demonstrates that training the models with contrastive loss appears to have

a similar issue of plateauing training loss. At this point, the following potential issues

and resolutions were considered:

• The models tested may not contain enough parameters to learn to distinguish

between the training addresses. This is unlikely, as models A, B, C, and D all

appear to have similar performance, even though they are significantly different

sizes.

• Training data may be too difficult. To combat this, the hard negatives introduced

in the data generation step could be removed or their frequency reduced. This

would make it easier for the embedding model to distinguish between the training

addresses. If the models still fail to converge, they could be too small, or the

addresses are still simply too difficult to distinguish between using only cosine

distance.

• Learning rate may be too high, preventing the models from converging. A lower

learning rate could be tested, or a learning rate scheduler could be used.

• Insufficient training time. It’s possible that the extra complexity of transformer

models just requires extra training time.

As model size is least likely to be the problem, another test was conducted with the

following changes:

• A new dataset was generated, removing all hard negatives and using only easy

negatives.

• The optimiser’s learning rate was reduced from 1𝑒− 3 to 1𝑒− 4.

• Models A and B were trained on the new dataset.

Figure 5.5 shows updated loss curves for the newly generated easy triplets training

set. One of the models from the previous round of training is included for reference.
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Figure 5.5: Training Loss for Address Embedding Models Using Easy Triplets

The models trained on the easy triplets loss curves trend quickly towards zero. This

shows that the problem was with the complexity of the training data. As such, two

new training datasets were generated, one with 10% hard triplets and one with 30%

hard triplets. Model A was shown to take a longer time to reach zero training loss for

the easy triplets, so Model B was chosen to continue development.

The embedding model was then progressively trained on each dataset to gradually

increase the number of hard triplets, making the training data more difficult and

guiding the model towards good embeddings. Scheduling functions were used to reduce

the learning rate, and the margin used in triplet loss was decreased with each training

set. This allows more difficult triplets to be closer together in the embedding space.

After completing the progressive training process, anecdotal testing was performed to

gauge how well the embedding model separates the addresses. This involved random

sampling of 30 addresses from the NZSA; these are presented in Table 5.6.
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ID Address

0 138 Fortescue Street, Mahia 4198

1 34 Glenshea Street, Putaruru 3411

2 154 Kohimarama Road, Kohimarama, Auckland 1071

3 66 Bayly Road, Blagdon, New Plymouth 4310

4 164 Halfway Bush Road, Mount Grand, Dunedin 9076

5 4/32 Avalon Drive, Nawton, Hamilton 3200

6 35 Premier Avenue, Point Chevalier, Auckland 1022

7 4/7 Riversdale Road, Avondale, Auckland 1026

8 961 Kaipara Hills Road, Kaipara Flats 0984

9 3 Cuba Street, Petone, Lower Hutt 5012

10 14 Scotston Avenue, St Albans, Christchurch 8052

11 290 Heatherlea East Road, Levin 5571

12 133 Tanner Street, Grasmere, Invercargill 9810

13 510/22 Herd Street, Te Aro, Wellington 6011

14 70 Devon Street East, New Plymouth 4310

15 38 Beach Parade, Oneroa, Waiheke Island 1081

16 48 JG Wilson Drive, Waipukurau 4281

17 14 Bine Crescent, Orewa 0931

18 4D Coronation Court, Milton 9220

19 12 Honeystone Street, Helensburgh, Dunedin 9010

20 10 Hatfield Way, Huntington, Hamilton 3281

21 64 Archboyd Avenue, Mangere East, Auckland 2024

22 61 William Street, Waihi 3610

23 1/53 Carruth Road, Papatoetoe, Auckland 2025

24 48 Meadowbank Road, Meadowbank, Auckland 1072

25 682 South Titirangi Road, Titirangi, Auckland 0604

26 40 Rennie Drive, Mangere, Auckland 2022

27 20 Ariki Road, Hataitai, Wellington 6021

28 40 Matos Segedin Drive, Leamington, Cambridge 3495

29 24 Tasman Road, Otematata 9412

Table 5.6: Randomly Sampled Addresses for Initial Testing purposes
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Addresses were then selected from this sample and adjusted in a variety of ways before

being embedded and compared back to the sample database. The results of this testing

are as follows:

Test: Untouched addresses should have perfect similarity ✓

Query: '138 Fortescue Street, Mahia 4198'

Matched To: '138 Fortescue Street, Mahia 4198'

Match Similarity: 1.0

Next Best Match Similarity: 0.7029

Average Non-Match Similarity: -0.0163

This is a simple test of the similarity metric and that embeddings have been recorded

correctly. This should always result in a similarity of 1, as it has here. This test was

successful.
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Test: Removing postcodes ✓✓✓

ID: 1

Query: '34 Glenshea Street, Putaruru'

Matched To: '34 Glenshea Street, Putaruru 3411'

Match Similarity: 0.9329

Next Best Match Similarity: 0.6211

Average Non-Match Similarity: 0.02659

ID: 2

Query: '154 Kohimarama Road, Kohimarama, Auckland'

Matched To: '154 Kohimarama Road, Kohimarama, Auckland 1071'

Match Similarity: 0.9498

Next Best Match Similarity: 0.6275

Average Non-Match Similarity: -0.01762

ID: 3

Query: '66 Bayly Road, Blagdon, New Plymouth'

Matched To: '66 Bayly Road, Blagdon, New Plymouth 4310'

Match Similarity: 0.9647

Next Best Match Similarity: 0.4415

Average Non-Match Similarity: -0.04945

As postcodes are relatively unique between addresses (in this database and in a training

batch), it was tested that the model does not rely on postcodes to match addresses

successfully. In this test, all match similarities remained high, and the next-best

matches remained low. This is a good outcome, indicating the model understands

what represents an address and does not exploit shortcuts.
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Test: Removing area information ✓✓✓

ID: 4

Query: '164 Halfway Bush Road'

Matched To: '164 Halfway Bush Road, Mount Grand, Dunedin 9076'

Match Similarity: 0.7325

Next Best Match Similarity: 0.5997

Average Non-Match Similarity: 0.03778

ID: 5

Query: '4/32 Avalon Drive'

Matched To: '4/32 Avalon Drive, Nawton, Hamilton 3200'

Match Similarity: 0.8272

Next Best Match Similarity: 0.7164

Average Non-Match Similarity: 0.08559

ID: 6

Query: '35 Premier Avenue'

Matched To: '35 Premier Avenue, Point Chevalier, Auckland 1022'

Match Similarity: 0.9004

Next Best Match Similarity: 0.6572

Average Non-Match Similarity: 0.09345

This test measures how well the model handles a large reduction in tokens. The

addresses should clearly be matched, but the semantic meaning is different as there is

no area information. The similarity scores of the best match have dropped somewhat,

but the non-match scores have also dropped a commensurate amount.
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Test: Removing a variation of fields ✓✓✓

ID: 7

Query: '4/7 Riversdale Road 1026'

Matched To: '4/7 Riversdale Road, Avondale, Auckland 1026'

Match Similarity: 0.8647

Next Best Match Similarity: 0.6550

Average Non-Match Similarity: 0.05968

ID: 8

Query: '961 Kaipara Hills Road Flats'

Matched To: '961 Kaipara Hills Road, Kaipara Flats 0984'

Match Similarity: 0.9729

Next Best Match Similarity: 0.5032

Average Non-Match Similarity: -0.01369

ID: 9

Query: '3 Cuba 5012'

Matched To: '3 Cuba Street, Petone, Lower Hutt 5012'

Match Similarity: 0.7916

Next Best Match Similarity: 0.5793

Average Non-Match Similarity: 0.02816

This test confirms the model learned to handle information gaps. The similarity scores

for matches have remained high, and non-matches are relatively low.
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Test: Typo in street name and remove some area information ✓

ID: 10

Query: '14 Scotstn Avenue, St Albans'

Matched To: '14 Scotston Avenue, St Albans, Christchurch 8052'

Match Similarity: 0.8312

Next Best Match Similarity: 0.4038

Average Non-Match Similarity: -0.05224

This test tampers with the street name and city, which are both crucial parts of the

address. The match similarity has reduced, but it is still significantly higher than the

non-match similarities.
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Test: Borrowing street numbers and postcodes from other addresses ✓✓✓

ID: 11

Query: '280 Heatherlea East Road'

Matched To: '34 Glenshea Street, Putaruru 3411'

Match Similarity: 0.7842

Next Best Match Similarity: 0.7421

Average Non-Match Similarity: 0.0880

ID: 12

Query: '133 Tanner Street 9810'

Matched To: '133 Tanner Street, Grasmere, Invercargill 9810'

Match Similarity: 0.6901

Next Best Match Similarity: 0.6694

Average Non-Match Similarity: 0.06077

ID: 13

Query: '133 Herd Street'

Matched To: '510/22 Herd Street, Te Aro, Wellington 6011'

Match Similarity: 0.8021

Next Best Match Similarity: 0.7939

Average Non-Match Similarity: 0.07976

These tests tamper with information by borrowing it from other addresses, this mea-

sures how well the embedding model can prioritise parts of the address, and look at the

address as a whole. The addresses have successfully matched, but the similarity scores

are much closer to the next best matches than previously. This could be problematic

when extending to the complete NZSA database.

Due to concerns about the extensibility of this embedding model, this test was repeated

using the full NZSA database. In this more complicated test, queries with IDs 1–10

and 12 were matched accurately; however, queries 11 and 13 were mismatched to

addresses that share similar tokens:

ID: 11
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Query: '280 Heatherlea East Road'

Matched To: '280 Hinuera Road, Matamata'

Match Similarity: 0.9745

ID: 13

Query: '133 Herd Street'

Matched To: '8C/33 Hunter Street, Wellington Central, Wellington'

Match Similarity: 0.9586

Inspection of the NZSA reveals that these specific addresses don’t exist on the streets

specified (either because they were modified or the address is not included as it is non-

residential). However, this was still considered problematic as the preferred behaviour

for a geocoder in these instances is to return a match where the street is accurate and

the street number is as close as possible.

This indicated that the model was placing too much emphasis on the street number.

Significant time and several strategies were used in an effort to combat this. However,

they were largely unsuccessful. For this reason, they are covered only briefly here:

• Increasing hyperparameter values to create larger models capable of learning

deeper address representations.

• Training the models for longer periods of time and with reduced learning rates

and loss margins.

• Introducing a positional encoding encoding layer. Positional encoding layers are

used to identify where each token has come from in the address. These are

typically used with transformer models but are more impactful for sequence-to-

sequence tasks such as language translation. Positional encoding is described in

detail in [54].

• Introducing an LSTM layer. This was used in another attempt to capture se-

quential information due to its success in the parsing model.

As these attempts were unsuccessful, it is likely that the address embedding approach

is limited by one of two things:
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• How much information can be learned and stored in relatively short embedding

vectors. When compared with TF-IDF vectors, for example, these are 10-20

times smaller.

• A more complete dataset may be required for training. This might involve

labelled similarities rather than binary labels.

The embedding model was not pursued further, as alternative approaches demon-

strated greater promise within the available time frame. It was also decided to only

develop the hybrid methods discussed in §4.6.7 based on the compositional vectors

method, as this was more promising than the embedding model.

5.3 Neighbourhood Searching

Due to the abandonment of the address embedding model, this section covers only

experimentation done for neighbourhood searching on the outputs of the compositional

vectors (see §4.6.4) model.

Recall there are four nearest neighbour search methods appropriate for use with these

vectors:

• brute force distance calculation;

• brute force classification model;

• KD tree; or

• ball tree

Cosine and Euclidean are the most popular distance metrics in the literature, so these

were chosen to test brute force. SciPy [55] and scikit-learn [39] both provide imple-

mentations of KD trees, while only scikit-learn provides an implementation of ball

tree. These will be used to evaluate the search tree algorithms.

The following process was used to evaluate the speed of these search methods for all

𝑛 ∈ {1, 5, 50, 100, 500}:
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1. 𝑛 addresses were randomly selected from the NZSA.

2. Addresses were vectorised using the compositional vector method.

3. Address vectors queried against the entire NZSA dataset using each nearest

neighbour method.

4. Record total query time.

5. Repeat 10 times; measure average duration and standard deviation.

Figure 5.6: Speed Performance Comparison of Nearest Neighbour Search Methods

Figure 5.6 demonstrates the durations achieved for each search method. Ball tree was

surprisingly slow when compared to KD tree, as it is intended to deal with higher

dimensional data. KD trees significantly outperformed brute force approaches, with

the SciPy implementation having a speed advantage compared to the scikit-learn im-

plementation. As each of these methods returns the best match based on a distance

calculation, and the cosine distance is equivalent to Euclidean distance on normalised

vectors, speed is the only concern here. This makes the SciPy implementation of KD

tree the top contender.

The only remaining method to test is classification. This required a different approach,

as accuracy and speed needed to be evaluated. The classification models selected for

this evaluation were random forest, logistic, and a decision tree classifier, as these were

the most common in the literature survey (see §3.3.3).
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Two approaches were taken to fit these classification models. Both of these rely on the

dataset generated for contrastive loss in the address embedding model. Recall that

this dataset contains pairs of addresses and a label of 1 or 0 to indicate whether the

addresses match or not. This dataset was used in two ways.

The first test concatenated the vectorised addresses together as raw features for the

models. That is, for 𝑛 dimensional address vectors, the training set has 2𝑛 columns.

This can be visualised using dummy address vectors like so:

𝑎1 =

⎡⎢⎣1

0

0

⎤⎥⎦ , 𝑎2 =

⎡⎢⎣0.9

0

0

⎤⎥⎦ , 𝑎3 =

⎡⎢⎣0

1

0

⎤⎥⎦ , 𝑎4 =

⎡⎢⎣0

0

1

⎤⎥⎦ .

Assuming 𝑎1 and 𝑎2 are a match (label of 1), and 𝑎3 and 𝑎4 are not a match (label of

0), the training set would be:

[︃
1 0 0 | 0.9 0 0

⃒⃒
1

0 1 0 | 0 0 1
⃒⃒

0

]︃
.

This is essentially providing the models with the raw data. The second test calcu-

lated the element-wise absolute difference between address vector pairs. The intuition

behind this training set is that the vectors were designed to align in the fashion of a

distance calculation, so this should help the classification models understand interac-

tions between the two addresses. Using the same dummy data, this training set would

be:

[︃
0.1 0 0

⃒⃒
1

0 1 1
⃒⃒

0

]︃
.

In each case, 20% of the data was withheld as a testing set, and the classifier models

were trained on the remaining data. The testing accuracy was measured for each

model and test set, as well as the inference duration. The results from this experiment

are presented in Table 5.7.
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Classifier Acc. 1 (%) Dur. 1 ms Acc. 2 (%) Dur. 2 (ms)

Logistic 63 5.55 83 2.67

Random forest 81 1,040 98 324

Decision tree 78 25.2 97 4.90

Table 5.7: Results from Classifier Experimentation

The results in Table 5.7 demonstrate that the random forest classifier is the most

accurate, as expected, but it is also significantly slower. The logistic classifier is much

faster but has a significantly lower accuracy. The decision tree classifier strikes the

best balance between the two metrics.

The second dataset is also clearly the better approach, improving both accuracy and

inference duration. The downside of this method is the extra pairwise computation

required. Calculation of the absolute differences was completed at approx. 1.7m vector

pairs per second. Given the NZSA dataset is over two million rows long, approaches

using this training set will not be able to achieve one address match per second.

Given the low accuracy of classifiers using the first dataset and the poor speed perfor-

mance for generating the second dataset, it was decided not to pursue classification

models as a form of nearest neighbour search any further.

The top contender for nearest neighbourhood searching was, therefore, the KD tree

implementation from SciPy, and this search strategy was implemented for use with

the compositional vectors and associated hybrid methods.

5.4 Hybrid Methods

Recall that hybrid methods were discussed briefly in §4.6.7 as a potential approach to

balance the speed of models that compress address data (compositional vectors and

address embedding) and the accuracy of those that work on raw address data (fuzzy

and TF-IDF).

The speeds demonstrated by KD trees in §5.3 show promise for hybrid methods.

Testing was therefore conducted to measure the effective increase in speed from using

hybrid methods. Note that the complications with the address embedding model
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resulted in a larger-than-expected model. This nullifies the potential speed benefits

of hybrid methods. Therefore, this testing was conducted only for the compositional

vectors method instead of both as previously planned.

Therefore, two hybrid methods were selected:

• Fuzzy Hybrid: Using KD trees to query the 𝑘 nearest points for each address,

then selecting the corresponding 𝑘 rows in the NZSA dataset to use as the search

space for component-wise fuzzy matching.

• TF-IDF Hybrid: Using KD trees to query the 𝑘 nearest points for each address,

then selecting the corresponding 𝑘 rows in the TF-IDF matrix. As with the TF-

IDF method, cosine similarity can then be used to find the best match between

TF-IDF vectors.

The parameter 𝑘 will determine the balance between speed and accuracy. This is

expected as returning more points will both reduce the query speeds of the KD tree

and increase the computational effort required for the final similarity step. However,

the extra rows returned also produce more addresses to be evaluated in the final

similarity step, which should provide more accurate results.

For a hybrid method to have value beyond the individual methods, it must be at least

as fast as the slower method (e.g., the fuzzy hybrid method must be at least as fast

as the regular fuzzy matching method).

To experiment with the range of acceptable 𝑘 values, 10,000 addresses were randomly

sampled from the NZSA, then fed through the hybrid models to measure matching

speed. Note that accuracy is not measured here as it would be 100% due to the use

of actual addresses from the reference database.
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Figure 5.7: Hybrid Method Match Rates for Different 𝑘 Values

Figure 5.7 demonstrates the decline in matching speeds for larger values of 𝑘, as

expected. Both hybrid methods display similar performance, which is expected as

most of the computation in matching is now offloaded to the KD tree. That is, for

a 𝑘 value of 100, a KD tree returns the 100 best matches (based on compositional

vectors) out of approx. 2 million potential matches. Therefore, the fuzzy and TF-IDF

similarity measures work on a significantly reduced dataset.

The relationship between 𝑘 and match rate suggests that values of < 80 are most

appropriate for 𝑘, but the best value for the parameter is likely to depend on the

exact data and user need. Therefore, 80 is used as the default value, and 𝑘 is exposed

as an argument for the user to select.

This concludes the Experimentation chapter. This chapter covered the experiments

conducted for the RNN parsing model, the reasons behind abandoning the address

embedding approach, nearest neighbour search methods, and hybrid approaches to

address matching. The next chapter will discuss the performance of the final methods

on real-world data and draw comparisons to alternatives available in the market. The

next chapter will also cover potential next steps for this project.



Chapter 6
Results and Discussion

This chapter includes an evaluation of implemented models and comparisons to a

selection of alternative solutions available in the market. This chapter also covers

potential gaps in the analysis and improvements that could be made in the future.

6.1 Evaluation

This evaluation section includes analyses of the parsing and matching algorithms’

performance in isolation and holistically. It also covers the dataset used to evaluate

these algorithms.

6.1.1 Evaluation Dataset

NZ Post is a national courier and mail delivery service in NZ. In order to help fairly

evaluate the models discussed, NZ Post was able to provide a real dataset of ad-

dresses they had recently received for deliveries. This dataset contained 2,500 delivery

addresses.

From a visual inspection of the dataset, it was clear that these addresses were of fair

quality. While this is indicative of the improvements made in recent years with many

online services using address validation, the dataset does not include a good sample
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of ‘messy’ addresses. The ability to handle messy addresses was a goal of this project,

as many legacy datasets of addresses were created prior to the widespread adoption

of address validation services.

As a dataset containing messy addresses was not able to be obtained for this eval-

uation, a GPT model from OpenAI was used to augment the base dataset. The

GPT-4o model was programmatically called with two different prompts, instructing

the Large Language Model (LLM) to make ‘realistic’ and ‘aggressive’ adjustments to

every address provided from the following list:

• Typographical errors, including substitutions, additions, deletions, transposi-

tions, and duplications.

• Abbreviations where possible.

• Phonetic and transcription errors.

• Randomly including or excluding the city, postcode, and suburb fields.

• Any other common representations expected from human-entered addresses.

The prompt used is included in Appendix D. This was implemented in batches of 50

addresses to avoid token and memory limits for the LLM. The output of these prompts

then underwent human review and adjustment. Table 6.1 is an excerpt of this dataset

to indicate the level of adjustments made.
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Type Address

Nice 101 Roberts Street Taupo 3330

Realistic 101 Robberts St Taupo 3330

Aggressive 101 Robits St Taopo

Nice 238 Fitzherbert Avenue West End Palmerston North 4410

Realistic 238 Fitzherbert Ave West End Palmerston North

Aggressive 238 Ftzhrbt Av Wst End Plmston N 4410

Nice 96 Symonds Street Grafton Auckland 1010

Realistic 96 Simonds Street Grafton AKL

Aggressive 96 Symnd St Grafton

Nice 214 Queen Street Auckland Central Auckland 1010

Realistic 214 Qeen Street Auckland Central

Aggressive 214 Qn St Akl Cntrl

Table 6.1: Evaluation Dataset Example

This shows:

• Nice addresses are well formatted and include all the appropriate fields.

• Realistic addresses contain 1–2 adjustments that are in line with human-entered

addresses and are still clearly understandable.

• Aggressive addresses often contain multiple or stretching adjustments that a

human would be unlikely to enter but can still understand.

This approach creates an evaluation dataset comprised of three tiers of difficulty. This

enables the following analysis to measure geocoding performance on fair geocoding

tasks, as well as measure their robustness to poorly formatted search queries.

6.1.2 Geocoding Errors

When evaluating geocoding results, it is useful to categorise the results beyond just

correct or incorrect. This is because different geocoders will be working from different

databases and may have slight variations in coordinates, missing addresses, etc. Using
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extra categories helps understand how well the geocoder performs and handles these

problems. The categories used for this analysis are described below in Table 6.2:

Type Definition(s) Considered Correct

Perfect • Address matched and coordinates

correct
✓

Near perfect
• Address matched and coordinates

within 500m

• Street is correct with a small error in

street number and coordinates

Slight mismatch • Address information is partially cor-

rect but in the wrong area or street
✗

Total Mismatch
• Address incorrectly matched

• Address is in the wrong country

Table 6.2: Evaluation Categories

These categories are ordered from most to least desirable, with the following justifica-

tions:

• Perfect match: This is the most desirable as the correct coordinates have been

returned, and the address has been matched perfectly. Ideal for data analysis.

• Near perfect: These coordinates are still usable for most applications. The

geocoder is likely working off a database with missing addresses or slightly in-

correct coordinates.

• Slight mismatch: The geocoder has nearly made the correct match but may be

in the wrong area; the results are likely partially usable.

• Total mismatch: There is no clear link between the searched address and the

returned one. Unusable for most applications.
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6.1.3 Alternative Solutions

There are several commercial and open-source alternatives available for geocoding.

This section evaluates their performance using the evaluation dataset, considering key

factors such as processing speed, cost structure, accuracy, and API usage limitations.

Table 6.3 lists the alternatives selected for comparison. These were selected to give a

range of APIs from large cloud providers, dedicated mapping services, and free and

paid services to ensure a comprehensive analysis of the available options.

API Pricing Model

Google Commercial

AWS/ESRI Commercial

Azure Commercial

Mapbox Commercial

Nominatim (OpenStreetMap) Free

Table 6.3: Alternative Geocoders

Usage Limitations

Geocoding services typically impose limitations on the usage of their APIs through

the following mechanisms:

• data restrictions;

• API throttling; and

• pricing structures.

This section discusses these limitations and their implications for the alternative

geocoders outlined in Table 6.3.

Data Restrictions

Many geocoding APIs restrict what their data may be used for, e.g., the AWS Service

Terms prohibit scraping, systematic collection, storing, or duplicating results from



94 Results and Discussion

any of their location services [49]. There are also restrictions on using their results

alongside company branding or advertisements. Some APIs offer two pricing tiers to

allow users to store results. As each API comes with a long list of restrictions, these

are not replicated in full here, but the potential limitations are worth mentioning as

part of this analysis.

API Throttling

Many APIs employ throttling as a technique to ensure the service does not become

overloaded by large volumes of requests. As geocoding often requires processing large

volumes of addresses, It’s common for these APIs to implement batch geocoding,

where a user can submit multiple queries with a single request. This often has no

effect on pricing, but will allow users to submit increased volumes of requests, as the

rate limits are typically specified in requests per second (r/s), rather than queries per

second (q/s). Table 6.4 details the rate limitations documented for the selected APIs,

with all rates translated into q/s for comparability.

Provider Rate Limit (q/s) Time for 10k (s)

Google Maps [18] 50 200

Mapbox [33] 1000 10

AWS [48] 100 100

Azure Maps [36] 50 200

Nominatim 1 1,000

Table 6.4: Geocoding API Rate Limitations

Table 6.4 shows that there is a large variation in the speed of commercial geocoders,

and for Nominatim, the rate limit prohibits geocoding large volumes of data. Mapbox

is the fastest (perhaps because it is a dedicated mapping provider), though it’s worth

noting that this limit has only recently increased from 10 queries per second with the

release of their v6 API in April 2024 [33].

It is also worth noting that these rate limits indicate a theoretical maximum speed

for their respective services. Full utilisation of these rates may require some form of

multithreading, as API responses may not be fast enough to reach the rate limit when

calling the APIs sequentially. The speeds achieved in practice will be covered in §6.1.3

Pricing

Each geocoding API has their own pricing model. These are often tiered to reduce the
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per-query cost for larger volumes of requests. Some APIs also include a free tier for

limited usage. Table 6.5 calculates the cost of using each of these APIs for 10k and

500k addresses to give a quick indication of pricing and scalability for each API.

Provider Price for 10k Price for 500k Currency

Google Maps [18] $50 $2,100 USD

Mapbox (Temporary) [34] $0 $300 USD

Mapbox (Permanent) [34] $50 $2,500 USD

AWS (Core) [47] $5 $250 USD

AWS (Stored) [47] $40 $2,000 USD

Azure Maps [36] $22.50 $2,227.50 USD

Nominatim $0 $0 -

Table 6.5: Pricing Comparison of Alternative Solutions

This shows that AWS and Mapbox provide far cheaper geocoding services (provided

that you do not need to store the results). For use cases that require storage of results

to perform analysis, the prices are typically much steeper, quickly reaching thousands

of dollars.

Results

To evaluate the performance of each geocoding API, their official Python interfaces

were used in accordance with their documentation to process the evaluation dataset.

The implementation of each of these is included in Appendix C and limits the search

space (where possible) to New Zealand addresses. This allows for the best comparison

to the methods implemented for this project – recall that only NZ addresses are in

scope for this project.

Speed

Table 6.6 details the speeds achieved in practice in comparison to the theoretical max

speeds available.
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Provider Rate Limit (q/s) Rate Achieved (q/s) Duration (h:mm)

Google Maps 50 3.93 0:38

Mapbox 1000 11.57 0:11

AWS 100 1.10 1:53

Azure Maps 50 1.85 1:08

Nominatim 1 1.00* 2:05

* Nominatim API was artificially limited to respect usage policy

Table 6.6: Geocoding API Rates for 7,500 Evaluation Addresses

The rates achieved for this evaluation are significantly lower than the theoretical max-

imum for most APIs. This is due to the following:

• The Mapbox Python interface has not yet been updated to use the batch geocod-

ing endpoint. Instead, it uses an older endpoint which has a specified rate limit

of 10 q/s [33].

• The Azure Batch Geocoding endpoint does not support the use of country fil-

tering. As such, the regular geocoding endpoint was used to provide a fairer

evaluation.

• No special effort was taken to parallelise requests to any APIs. This would

have likely significantly increased the speed (although it requires more upfront

development effort), particularly for the non-batch endpoints.

Accuracy

To calculate the accuracy of each geocoding API against the evaluation dataset, the

2,500 addresses were initially manually matched to the correct address in the NZSA

dataset. The coordinates retrieved via this match are considered to be the truth, and

results from the geocoding APIs are compared against this.

In accordance with the definitions previously outlined in Table 6.2, if an address

is matched correctly and its coordinates are within 500 m of the true location, the

match is considered to be correct. This assumes that the addresses have been matched

correctly based on coordinates alone. This means that there is the possibility of ‘slight

mismatches’ being considered as ‘near perfect matches’, as the geocoders may return

an address in the correct neighbourhood but within the 500 m threshold. As such,

this method only provides a rough estimate as to the accuracy of these geocoders.
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Provider
No. Incorrect % Accuracy

Nice Realistic Aggressive Nice Realistic Aggressive

Google 1 42 224 99.96 98.32 91.04

AWS 7 32 324 99.72 98.72 87.04

Azure 53 194 1284 97.88 92.24 48.64

Mapbox 15 78 478 99.4 96.88 80.88

Nominatim 154 675 2145 93.84 73.00 14.20

Table 6.7: Geocoding API Accuracy Estimations

These results suggest that Google and AWS are the most accurate geocoders, both

in terms of plain accuracy as well as robustness. An interesting result is that Azure’s

performance declines significantly for the realistic and aggressively modified addresses.

Inspection of the match results here shows that despite setting the country filter to

NZ, the API has begun to return overseas addresses that are similar to the queried

addresses. The freely available geocoder Nominatim performed significantly worse on

all address types compared to the commercial solutions. It achieved approximately

94% accuracy on the nicely formatted addresses, but this deteriorates significantly

with realistic and aggressively modified addresses.

Manual inspection of the Google and AWS results shows that, as expected, some ‘slight

mismatches’ have been classed as ‘near perfect matches’. For example, an address may

be matched with the incorrect street within 500 m of the correct coordinates. This

should be classified as incorrect. An example of this from the evaluation dataset is:

59 French Street S Eden Terrace Auckland → 59 Mount Eden Rd, Eden Terrace, Auckland

4 Spence Ln Whakatane 3120 → 3120, Whakatane, Bay of Plenty

This demonstrates two addresses may be within a small enough area to be considered

a correct match despite the street name and number being clearly incorrect.

This inflates the accuracy measure slightly. As these two geocoders are a step above

the rest, they were both selected for further detailed analysis. This involved manual

checking of the results, ensuring confidence in the accuracy assessments.
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The detailed results presented in tables 6.8 and 6.9 show that the accuracies have

reduced slightly for the realistic addresses and more considerably for the aggressive

addresses. The Google API is still the top-performing geocoder in terms of accuracy.

Additionally, the Google API has a much higher proportion of mismatched addresses

in ‘Slight Mismatches’ rather than ‘Total Mismatches’. This means they are more

likely to be in the correct vicinity. AWS consistently has six ‘Near Perfect’ matches,

which indicates its records may be slightly out of date.

Dataset Perfect Near Perfect Slight Mismatch Total Mismatch Acc. (%)

Nice 2499 - 1 - 99.96

Realistic 2411 - 58 1 97.61

Aggressive 2199 1 216 84 88.00

Table 6.8: Detailed Results for Google API

Dataset Perfect Near Perfect Slight Mismatch Total Mismatch Acc. (%)

Nice 2490 6 4 - 99.84

Realistic 2461 6 30 3 98.68

Aggressive 2107 6 197 190 84.52

Table 6.9: Detailed Results for AWS API

6.1.4 Implemented Solutions

The same evaluation dataset is used to analyse the performance of the solutions im-

plemented for this project. Algorithms for parsing will be analysed first, as they are

the precursor to some of the matching algorithms. Matching algorithms that require

a parser are, therefore, limited by the parser’s performance.

Parsing

Two parsing models were implemented for this project. The first is a wrapper around

the existing libpostal package, and the second is the custom-built RNN-based parser.

The same evaluation dataset is used to estimate accuracy and robustness of the two

parsers, however, the approach had to be adjusted slightly for this evaluation as there

is no ground truth to use as a baseline.
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For nicely formatted addresses, the results previously attained from the Google

Geocoding API were used for comparison. These results contain labelled data for the

matched address, so comparisons can be drawn between the parsed addresses and

this labelled data. Results that differed from the results from the Google API were

manually checked to verify incorrect parsing and classify the type of parsing error.

During this classification, how many addresses were incorrectly parsed and the severity

of parsing-related errors were tracked, measured by both the number of words and the

number of characters misclassified. These are important measures to consider as they

have a direct impact on the ability of the matching algorithms to successfully match

the address after a parsing error. The results of this evaluation are presented in Table

6.10.

Measurement libpostal Score RNN Score

Parsing duration (s) 0.11 0.13

Parsing rate (addresses per s) 23,364 19,380

Total Errant Addresses 56 106

Errant Addresses (%) 2.24 4.24

Total Errant Fields 142 212

Errant Fields (%) 1.40 2.09

Total Errant Characters 567 280

Errant Characters (%) 0.61 0.30

Table 6.10: Parsing Results for Nicely Formatted Addresses

These results demonstrate that both parsing algorithms offer sufficient speed and high

precision for parsing addresses. The libpostal parser has a slight edge over the RNN

parser in most metrics, except for the number of characters misclassified. This is

perhaps the most important metric for address-matching purposes, as smaller errors

are more likely to be overcome by the matching algorithm.

During the classification of these errors, the following insights were also noted:

• The libpostal parser classifies words as a whole, whereas the RNN parser clas-

sifies individual characters. This is the source of the discrepancy in accuracy

measurements between the two parsers.
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• The main error present in the results from the libpostal parser was appendment

of suburb words to the street.

• The second most common error was interpreting the postcode as a street number.

• The only type of error made by the RNN parser was appending characters from

the suburb field to the street.

• 35% of errors made by the RNN parser were on addresses with ”quay” in them.

This may indicate quays are under-represented in the training data.

For the realistic and aggressively modified addresses, there was no correctly labelled

data available for comparison. Instead, results from each parser were compared. Ad-

dresses with different parsing results were manually checked and classified as follows:

RNN parser was correct, libpostal parser was correct, or neither parser was correct.

These results are presented below in Table 6.11

Type Disagreements RNN Correct libpostal Correct Neither

Realistic 553 284 220 49

Aggressive 1507 1243 99 165

Table 6.11: Error Classifications for Realistically and Aggressively Modified Addresses

Assuming that addresses with no disagreements between the parsers were parsed cor-

rectly, error rates can be estimated as:

Metric libpostal Score RNN Score

Errant Realistic Addresses 333 269

Errant Realistic Addresses (%) 13.32 10.76

Errant Aggressive Addresses 1408 264

Errant Aggressive Addresses (%) 56.32 10.56

Table 6.12: Parser Error Estimates for Realistically and Aggressively Modified Ad-
dresses

These results demonstrate that the performance of the libpostal parser deteriorates

similarly to the performance of the RNN parser on addresses with realistic modifica-

tions. However, when parsing the aggressively modified addresses, the performance of
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the RNN parser does not deteriorate further, while the performance of the libpostal

parser deteriorates significantly. The following observations were also made while

classifying these errors:

• Both parsers continue to make the same kinds of errors as with nice addresses,

i.e., the libpostal parser mistakes suburb info for street names, and the RNN

parser misclassifies occasional characters from the suburb into the street name.

• The libpostal parser makes these errors at a significantly higher rate than previ-

ously observed in the nicely formatted addresses. The cause of this is not evident

in the data.

• The libpostal parser cannot handle typos removing spaces between fields, e.g.

“70 Symonds StreetGrafton” will not have the suburb parsed. This is due to the

libpostal parser restriction of classifying whole words at a time.

• The RNN parser struggled with abbreviations of ”terrace” and ”quay”, when

the street type was omitted (e.g. 70 Symonds Grafton), and when the address

contained ambiguous cardinal information (e.g. 29 Customs Street West Auck-

land).

The errors observed from the RNN parser were likely due to an under-representation

of these issues in the training data. However, the ambiguous cardinal directions may

not be overcome without a link to an address database during parsing, as the cardinal

directions sometimes belong to the street and sometimes to the suburb. When the

separating character (e.g. a comma) is omitted, these addresses may never be parsed

accurately with the current methods.

Matching

Finally, the evaluation dataset was used to analyse the performance of each address-

matching algorithm. The address-matching algorithms (matchers) evaluated in this

section use the methods described in chapters 4 and 5. Recall that some of these

methods require an address parser, and utilise different nearest neighbour searches

to find the best matching address in the NZSA. Table 6.13 includes a summary of

the matchers for convenience. Note that for algorithms requiring a parser, the RNN
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parser was used during this evaluation as it demonstrated parsing speeds similar to

the libpostal parser and made less significant errors during parsing.

Matcher Uses Parser Description

Fuzzy ✓ Uses the component-wise fuzzy match-

ing method described in §4.6.2.

TF-IDF ✗ Uses TF-IDF vectors described in

§4.6.3 and a brute force cosine simi-

larity calculation to find the nearest

match.

Compositional Vector ✓ Uses compositional vectors described in

§4.6.4 to encode addresses, and a KD

tree to find the nearest match.

Address Embedding ✗ Uses the address embedding model de-

scribed in §4.6.5 with a KD tree to find

the nearest match.

Fuzzy Hybrid ✓ Initially uses compositional vectors and

a KD tree to find the 𝑘 closest matches,

then the component-wise fuzzy match-

ing method is used to determine the fi-

nal match.

TF-IDF Hybrid ✓ Initially uses compositional vectors and

a KD tree to find the 𝑘 closest matches,

then TF-IDF vectors and cosine simi-

larity scores are used to determine the

final match.

Table 6.13: Matchers Evaluated

First, the duration taken for each matcher to match the 7,500 evaluation addresses

was measured. From this, a rate of addresses per second was calculated to measure

scalability. Note that these times include the time taken for the parser to complete

parsing before matching begins. The results from this test are displayed in Table 6.14.
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Matcher Duration (mm:ss) Rate (Addresses/s)

Fuzzy 12:15 10.2

TF-IDF 6:06 20.5

Compositional Vector 0:17 436

Address Embedding 2:25 51.6

Fuzzy Hybrid (𝑘 = 20) 1:19 95.5

Fuzzy Hybrid (𝑘 = 80) 3:21 37.4

Fuzzy Hybrid (𝑘 = 120) 4:10 30.0

TF-IDF Hybrid (𝑘 = 20) 1:13 103

TF-IDF Hybrid (𝑘 = 80) 3:15 39.0

TF-IDF Hybrid (𝑘 = 120) 3:55 31.8

Table 6.14: Matching Algorithm Speeds

These results show that, despite the use of component-wise fuzzy matching over brute

force, the Fuzzy matcher is still the slowest method. the TF-IDF matcher was able

to match addresses at roughly twice the speed of the Fuzzy matcher, and it does not

require a parser. The Compositional Vector matcher was significantly faster than both

these methods, averaging speeds of 20-40 times faster. This was expected as it utilises

the KD-Tree structure for finding the closest matching address, whereas TF-IDF uses

brute force and the Fuzzy matcher uses blocking. Both hybrid methods offer speeds

faster than their base algorithm counterparts but still significantly slower than the

Compositional Vector matcher.

Repeating the process used for evaluating alternative Geocoding APIs, the results

were compared to the true coordinates, and matches farther than 500 m from the true

location were considered to be incorrect. The results are summarised in Table 6.15.
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Matcher
No. Incorrect % Accuracy

Nice Real. Aggr. Nice Real. Aggr.

Fuzzy 72 179 264 97.12 92.84 89.44

TF-IDF 20 28 126 99.20 98.88 94.96

Compositional Vector 167 610 1322 93.32 75.60 47.12

Address Embedding 637 1345 2319 73.08 46.20 7.240

Fuzzy Hybrid (𝑘 = 20) 127 525 1109 94.92 80.92 55.64

Fuzzy Hybrid (𝑘 = 80) 118 458 935 95.28 81.68 62.60

Fuzzy Hybrid (𝑘 = 120) 114 449 890 95.44 82.04 64.40

TF-IDF Hybrid (𝑘 = 20) 101 448 1027 95.96 82.08 58.92

TF-IDF Hybrid (𝑘 = 80) 127 377 819 96.48 84.92 67.24

TF-IDF Hybrid (𝑘 = 120) 118 357 767 96.68 85.72 69.32

Table 6.15: Matching Algorithm Accuracies for Nicely Formatted, Realistically Mod-
ified and Aggressively Modified Addresses

The results show that most methods provide highly accurate matching for nicely

formatted addresses. However, performance varies significantly when attempting to

match realistically and aggressively modified addresses. The TF-IDF matcher was

both the most accurate and robust method. This is likely due to the brute force search-

ing and large vectors used to represent the addresses. The Fuzzy matcher was the next

most accurate, which utilises blocking and preserves raw strings for matching. Of the

methods that rely on compressed address representations, the Compositional Vector

matcher significantly outperforms the Address Embedding matcher. Both methods

exhibit poor robustness to the modified addresses.

Hybrid methods demonstrated a balance between the speed of the Compositional

Vector matcher and the accuracy/robustness of the Fuzzy and TF-IDF matchers.

Again, TF-IDF showed a slight edge over the Fuzzy matcher, but both suffered in

robustness due to the use of the compositional vectors to reduce the initial search

space. Increasing values of 𝑘 improved accuracy and robustness but not to the level

of either base method (TF-IDF and fuzzy).

From these results, it can be concluded that the TF-IDF matcher is the most appro-

priate method for general purposes, though the Compositional Vector matcher and

hybrid matchers could be useful when applied to well-formatted addresses, as these

algorithms are orders of magnitude faster than TF-IDF while providing similar accura-
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cies. When dealing with extremely messy addresses, TF-IDF is the most appropriate

choice, as it is sufficiently robust to missing data fields, typos, abbreviations, and other

common address formatting problems.

Inspection of addresses that were mismatched showed that the implemented meth-

ods may have been somewhat limited in their accuracy due to address records not

included in the NZSA. To illustrate this, the 20 nicely formatted addresses that were

mismatched by the TF-IDF matcher are shown in Table 6.16.

Search Address Matched To Dist. (m)

Floor 1 1I/82 Cable Street Te Aro 1I/11 Charlotte Street, Eden Ter*, Akl* 491,354

10 Bethells Road Waitakere Akl* 108 Bethells Road, Waitakere, Akl* 4,968

13 Evergreen Drive Silverdale 13 Arran Drive, Silverdale 3,321

11 Evergreen Drive Silverdale 11 Arran Drive, Silverdale 3,308

9 Evergreen Drive Silverdale 9 Arran Drive, Silverdale 3,283

7 Evergreen Drive Silverdale 7 Arran Drive, Silverdale 3,250

5 Evergreen Drive Silverdale 5 Arran Drive, Silverdale 3,217

58C Milan Road Papatoetoe Akl* 48C Hamilton Road, Papatoetoe, Akl* 2,703

2 Evergreen Drive Silverdale 2 Harris Drive, Silverdale 2,638

20 Main Road South Paraparaumu 20 Menin Road, Raumati South, Para* 2,424

309 Harbour Road Ohope 109 Harbour Road, Ohope 2,137

409 Main South Road Hornby Chch* 209 Main South Road, Hornby, Chch* 1,931

221 Atkinson Road Titirangi Akl* 21 Atkinson Road, Titirangi, Auckland 1,760

181 Walters Road Takanini 3/11 Walters Road, Takanini 1,760

5 Kingfisher Way Tikipunga Whan* 5 Erin Street, Tikipunga, Whangarei 1,483

213 Birkdale Road Birkdale Akl* 21 Birkdale Road, Birkdale, Auckland 1,212

575 Chapel Road East Tamaki Akl* 357 Chapel Road, East Tamaki, Akl* 1,149

146 Wellington Street Opotiki 6 Wellington Street, Opotiki 931

135 Hamlet Street Stratford 35 Hamlet Street, Stratford 912

242 Grenada Street Mount M* 18 Grenada Street, Mount Maunganui 763

* Abbreviations applied to reduce table width

Table 6.16: Addresses Mismatched by TF-IDF Matcher

The first mismatch includes the floor in the address, which has resulted in a mismatch.

This could have been avoided by using the address parser first to remove unwanted

fields. However, it appears this is the only case.

Many of the remaining incorrect matches share a common theme of having matched

the correct street and area but including the wrong street number. Inspection of the

copy of NZSA used at the time of matching showed that all 19 mismatched addresses
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were not included. That is, either the street does not exist (e.g., Evergreen Drive,

Silverdale) or the specific address number is not included (likely due to it being a non-

residential address). As TF-IDF works purely based on token distances, differences in

street numbers such as 221 vs 21 are perceived as small when a match such as 21 vs 22

would actually be preferred as these are more likely to be close together geographically.

TF-IDF is the only method that can’t consider the numerical difference between street

numbers. It’s likely to have occurred significantly more than the 20 occurrences seen

here, as many of these mismatches will be within 500 m. It is also likely these missing

addresses are causing problems for the other matching methods, as they may prevent

backtracking in the Fuzzy matcher and result in more difficult distance comparisons

for the Address Embedding and Compositional Vector matchers.

As the NZSA is currently used as the basis for each matching method implemented

in this project, the accuracies are not adjusted to remove or discount errors made

when matching with addresses that are not present in the NZSA. However, it is worth

noting that accuracies are likely to increase when matching addresses that are strictly

residential.

6.1.5 Comparison

This section draws a comparison between the methods implemented for this project

and the performance of alternative solutions available.

A range of alternative geocoding APIs was explored in §6.1.3. The main criteria

considered were:

• restrictions of use;

• pricing;

• rate limitations; and

• accuracy

These criteria will also be used for comparing the implemented solutions, noting the

following:
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• Accuracy is compared using the accuracy to within 500 m metric. This was

calculated for both implemented and alternative solutions previously and allows

for direct and fair comparison.

• Match categories are therefore not used in this comparison. This is due to

the sheer volume of addresses that would require manual checking. There was

also little variation between accuracy scores when using match categories when

compared to the more simple accuracy within 500 m metric in the previous

analysis laid out in §6.1.3.

• Due to the nature of the implemented methods matching to specific addresses in

the NZSA, it is not possible to return suburb-only or postcode-only matches. For

this reason, it is likely the implemented methods return fewer slight mismatches

than the alternative geocoders. However, it is also likely that the implemented

methods return a greater number of near-perfect matches, as only residential

addresses are contained in the NZSA.

• The comparison focuses on TF-IDF and compositional vectors as these were the

standout implemented methods. It is therefore expected that these two methods

will be the most used.

Accuracy Comparison

Firstly, accuracy statistics are compared in detail in Table 6.17. This shows that the

TF-IDF matcher demonstrates accuracies comparable to the best available commercial

APIs. This is consistent across nicely formatted addresses, as well as realistically and

aggressively modified addresses. Compositional vectors does not perform as well as the

commercial APIs, but it has a base accuracy comparable to the Nominatim API (the

only free geocoding API available) and slightly better robustness to modifications.
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Matcher/API
No. Incorrect % Accuracy

Nice Real. Aggr. Nice Real. Aggr.

Google 1 42 224 99.96 98.32 91.04

AWS 7 32 324 99.72 98.72 87.04

Azure 53 194 1284 97.88 92.24 48.64

Mapbox 15 78 478 99.4 96.88 80.88

Nominatim 154 675 2145 93.84 73.00 14.20

TF-IDF 20 28 126 99.20 98.88 94.96

Compositional Vector 167 610 1322 93.32 75.60 47.12

Table 6.17: Comparison of Accuracy Scores for Implemented Methods and Alternative
Solutions

To improve the interpretability of these results, a grading scale is applied for base

accuracy and robustness. The grading scale used is:

Grade Percentage Range

A+ 95–100%

A 90–94%

A- 85–89%

B+ 80–84%

B 75–79%

B- 70–74%

C+ 65–69%

C 60–64%

C- 55–59%

F Below 59%

Note that this is an arbitrary scale, but it aids in providing a relative performance

metric for quickly comparing each geocoder. Measuring robustness as the average of

the accuracies on realistic and aggressively modified addresses, The resulting grades

from applying this rubric are presented in Table 6.18.
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Matcher/API
Accuracy Robustness

% Grade % Grade

Google 99.96 A+ 94.68 A+

AWS 99.72 A+ 92.88 A

Azure 97.88 A+ 70.44 B-

Mapbox 99.4 A+ 88.88 A-

Nominatim 93.84 A 43.60 F

TF-IDF 99.20 A+ 96.92 A+

Compositional Vector 93.32 A 61.36 C

Table 6.18: Accuracy and Robustness Gradings for Each Geocoder

These grades capture the accuracy and robustness of the geocoders on a simple scale

and demonstrate that the Nominatim API and Compositional Vectors matcher are

a step below in terms of accuracy. The grades also clearly show the variation in

robustness between the solutions.

Overall Comparisons

To form a complete comparison between implemented methods and alternative so-

lutions, accuracy needed to be considered alongside several other factors. These are

presented in Table 6.19.

Matcher/API Accuracy Robustness Rate (Max) Rate (Actual) Pricing Processing

Google A+ A+ 50 3.93 Paid Remote

AWS A+ A 100 11.6 Paid Remote

Azure A+ B- 50 1.10 Paid Remote

Mapbox A+ A- 1000 1.85 Paid Remote

Nominatim A F 1 1.00 Free Remote

TF-IDF A+ A+ - 20.5 Free Local

CV A C - 436 Free Local

Table 6.19: Complete Comparison of Implemented and Alternative Geocoders

In terms of accuracy, TF-IDF performs as well as the alternative commercial geocod-

ing APIs. It also demonstrates robustness better than many of these solutions and
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is on par with the top-performing Google Geocoding API. The Compositional Vec-

tor matcher demonstrates an accuracy on par with the freely available Nominatim

API, which is a step below the commercial geocoding APIs but sufficient for many

applications.

The theoretical maximum rates are included for each of the alternative APIs, as these

show the speeds achievable via parallelisation. These rates are not included for the

implemented methods, as these solutions can support any amount of parallelisation.

Hence, there is no theoretical maximum. Comparing the actual rates achieved in

this project gives a fair comparison of an easy implementation with no parallelisation

for each API/method. The Compositional Vector matcher was the fastest method,

achieving rates hundreds of times faster than other solutions. The TF-IDF matcher

is also faster than the alternative solutions.

Implemented solutions are freely available for installation and use locally, with no

restrictions. This is an advantage over the alternative solutions, which require pro-

cessing of data in the cloud and limit the applications and caching/storage of results

from their APIs.

These results demonstrate that the implemented methods are able to perform on par

with commercially available geocoding solutions without the restrictions inherent in

these APIs (pricing, security, usage rights, etc.), provided the addresses being geocoded

are within NZ, and include addresses rather than place of interest names.

6.2 Discussion

The results discussed in §6.1.5 provide a fair evaluation of the geocoding methods

implemented for this project by comparing their performance on an evaluation dataset

to several alternative solutions available in the market.

This section discusses potential shortcomings of this testing process, as well as other

notes made during the testing process that are worth further exploration beyond this

project.
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6.2.1 Evaluation Shortcomings

While the evaluation process is fairly comprehensive in measuring geocoding perfor-

mance, there are some shortcomings to be noted:

• The testing dataset does not include much information superfluous to geocoding.

That is, there are not many instances of building names and levels. While the

parsers were designed to handle this, and the anecdotal testing done during

experimentation in §5.1 shows promising results, there was no formal testing of

how well the geocoders are able to handle this additional information.

• The evaluation dataset is not split into residential and non-residential addresses.

While this is helpful for understanding an approximate accuracy for typical real-

world datasets (as these are also unlikely to be organised this way), it places the

implemented methods at a disadvantage compared to the alternative solutions

evaluated (as they are restricted to residential addresses in the NZSA). It would

be helpful to test the implemented methods on residential-only addresses to

estimate their accuracies when matching to an address database that includes

all possible addresses.

6.2.2 Potential Next Steps

Throughout the duration of this project, potential areas of improvement were identified

for the extension of the package. These were not within the scope of this project, but

they are noted here as potential next steps in the development of this package.

Parser Improvements

During the evaluation of the parsers in §6.1.4, it was observed that the RNN parser

struggled with streets involving ”quay”, ”terrace”, and abbreviations of these. This is

likely due to the under-representation of these words in the training dataset. Resam-

pling addresses with an even distribution of street types and retraining or fine-tuning

the existing model.
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Spatial Joins to Complementary Datasets

Using the NZSA dataset as the matching database has some inherent limitations,

which are discussed throughout this thesis. One of these is the limitation of matching

to “correct” addresses. While it did not appear to be a problem with the evaluation

conducted as part of this project, it is possible for addresses to be entered using

region names instead of suburbs or city names. For example, using ‘Waikato’ in

place of the city ‘Hamilton’. Such addresses are technically incorrect but are still

valid representations as they are uniquely identifiable and commonly found in address

datasets. This includes issues where addresses only note a suburb rather than a suburb

and city, as present in the NZSA.

Statistics New Zealand maintains several shapefiles containing boundaries of regions,

suburbs, territorial authorities, etc. These shape files could be spatially joined onto

addresses in the NZSA dataset to provide extra context for matching algorithms.

Use of OpenStreetMap Data

Another notable limitation of the NZSA is that only residential addresses are included.

This means that non-residential addresses are difficult to match accurately, and places

of interest can’t be matched. Replacing the NZSA with OSM data would resolve these

issues. However, it would also increase the computation required as there could be

significantly many more matching candidates.

Embedding Hybrid Models

During this project, hybrid models that utilise address embeddings were discussed.

This approach was discarded due to complications with the address embedding model,

which resulted in larger-than-expected embedding vectors. However, an alternative

smaller address embedding model could be developed specifically for use in a hybrid

model, where the embedding model is only intended for use in determining partial

matches, and TF-IDF could be used to make the final match calculation. Using an

embedding model specifically trained for approximate accuracy would result in a much

smaller and faster model.
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TF-IDF Adjustments

There are also a few adjustments that could be made to the TF-IDF model to improve

its performance:

• Use of parsers: It was seen in §6.1.4 that superfluous information can confuse

the TF-IDF matcher. This is because it works directly on the unstructured

address. This process could be changed to first use a parser to identify and filter

out superfluous information, allowing TF-IDF to focus on key features of the

address when matching. This would improve the robustness of the matcher with

a minor reduction in matching speeds.

• Numerical street numbers: §6.1.4 also revealed a limitation of TF-IDF that

numerical distance can’t be considered for street numbers. This is because TF-

IDF vectors only contain counts of each token. This could be resolved by includ-

ing an extra entry in the TF-IDF vectors that includes a scaled or transformed

version of the street number. This would encourage the cosine similarity to

match addresses geographically closer on the street when the actual address isn’t

available. This would improve accuracy with minimal impacts on computational

costs and portability.

• Multiple match addresses: The implementation of TF-IDF in this project

creates one vector per address in the NZSA. This is a straightforward approach

consistent with what’s seen in the literature. However, it could be beneficial

to create multiple vectorisations per address. This would aid in matching ad-

dresses with particularly long area information. For example, ‘70 Symonds

Street, Grafton, Auckland’ could be vectorised three times. Once using the

raw address, then two more times with ‘70 Symonds Street, Auckland’ and ‘70

Symonds Street, Grafton’. These are both reasonable representations of the

true address but create a distance between the correct match, which can result

in false matches to other addresses with similar tokens. This change would im-

prove the accuracy and robustness of the TF-IDF method at the cost of increased

computational effort and reduced portability.

• Token optimisation: Limiting the number of tokens used would produce

shorter TF-IDF vectors and improve computational costs. scikit-learn supports

setting a maximum number of tokens to use. However, this selects tokens based
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on the number of occurrences in the reference database, which does not necessar-

ily mean that these tokens will divide the database well. Optimisation methods

could be used to select tokens that strategically segment the address database.

As many of these potential next steps improve on one aspect at the cost of another

(e.g. improved accuracy but reduced speed and portability), combinations of these

are likely to yield the best improvements. These adjustments could also be offered as

separate models in order to maximise flexibility for end users.



Chapter 7
Software Contributions

The methods tested in the project have been incorporated into a freely available

Python package hosted in PyPI. The package allows users to install and use any

of the methods discussed in this thesis. The code is also published to GitHub at

https://github.com/lmor152/glam. A user guide and demo website have also been

developed to assist with getting started using the package.

7.1 Demo Website

A demo website is published at https://glam-demo.lmor152.com. The demo site allows

the visitor to enter an address, and results from parsing and matching the inputted

address are presented back to the visitor. Figure 7.1 includes a screenshot of the

website.

https://github.com/lmor152/glam
https://glam-demo.lmor152.com
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Figure 7.1: Screenshot of Demo Website

7.2 User Guide

The user guide is included with the GitHub repository and includes instructions for

installing and using the Python package for geocoding. A copy of the user guide is

included here for reference:

Geocoding via LINZ Address Matching (GLAM)

Overview
This package implements methods for performing entity matching on unstructured

NZ addresses to the New Zealand Street Address dataset maintained by Land In-

formation New Zealand. This package does not support PO boxes or international

addresses.

Installation
Get the latest version of glam by installing from PyPI:

pip install glam
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Usage
To setup glam, the dependencies have to be downloaded first. Alternatively, if this

is not done, glam will download dependencies the first time it’s used for geocoding.

from glam import Geocoder, download_dependencies

# directory to store glam's dependencies

download_dependencies("path/to/glamdeps")

addresses = [

"16 western springs rd morningside",

"4 ryelands dr, lincoln",

]

gc = Geocoder(

"path/to/glamdeps",

matcher = "tfidf",

parser = "rnn"

)

matched_addresses = gc.geocode_addresses(addresses)

print(matched_addresses)

Outputs:

[

Search address 16 western springs rd morningside -> matched

to 16 Western Springs Road, Morningside, Auckland with

0.899795426050709 confidence,

→˓

→˓

Search address 4 ryelands dr lincoln -> matched to 4

Ryelands Drive, Lincoln with 0.8462000263063917

confidence

→˓

→˓

]

Each matched address contains coordinates and other fields from the NZSA

dataset:
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>> matched_addresses[0].matched_address.to_dict()

{

'address_id': 1076278,

'unit_value': None,

'address_number': '16',

'address_number_suffix': None,

'address_number_high': None,

'full_road_name': 'Western Springs Road',

'suburb_locality': 'Morningside',

'town_city': 'Auckland',

'full_address_ascii': '16 Western Springs Road,

Morningside, Auckland',→˓

'shape_X': '174.7345083',

'shape_Y': '-36.8739952167',

'postcode': '1021'

}

Glam can also be used to parse addresses:

>> gc.parse_addresses(addresses)

[

ParsedAddress{'unit': None, 'building': None, 'level':

None, 'first_number': '16', 'first_number_suffix':

None, 'second_number': None, 'street_name': 'WESTERN

SPRINGS ROAD', 'suburb_town_city': 'MORNINGSIDE',

'postcode': None},

→˓

→˓

→˓

→˓

ParsedAddress{'unit': None, 'building': None, 'level':

None, 'first_number': '4', 'first_number_suffix': None,

'second_number': None, 'street_name': 'RYELANDS DRIVE',

'suburb_town_city': 'LINCOLN', 'postcode': None}

→˓

→˓

→˓

]
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Available Models
Models are divided into parsers and matchers. Some matchers work directly on un-

structured address strings, others require a parser to add structure to the addresses

before matching.

Matchers

• TFIDF (default): Uses term frequency inverse document frequency to match

unstructured addresses directly.

• Fuzzy: Uses component-wise fuzzy matching on parsed addresses.

• Vector: Uses custom address vectorisation logic to find the nearest match.

• Embedding: Uses deep-learned embeddings to vectorise addresses and find

the nearest match.

Parsers

• RNN: Uses an LSTM to parse unstructured address strings.

• libpostal: A wrapper around the postal Python package (requires libpostal

to be installed).

TFIDF is recommended for most use cases as it’s the most accurate method. Vector

is the fastest method but has reduced accuracy and robustness compared to TFIDF.

Note that by default, dependencies are only downloaded for TFIDF matching. If

another method is selected, the dependencies will be built the first time it is used

and saved for future use.

Custom Address Datasets

Glam can be used to match to other address datasets by placing your dataset

in the dependencies directory under ‘nz-street-address.csv’. Dependencies should

be rebuilt by deleting the matching directory under the dependency directory to

ensure they are referencing the new address database.





Chapter 8
Conclusions

This research project aimed to create a solution for geocoding NZ addresses. The

specific priorities of the project were:

• Speed: The solution should facilitate a swift turnaround of analytics.

• Accessibility: It should be freely available and not require extensive software

installations or specialist hardware.

• Local execution: The solution should be executable locally to meet potential

security requirements surrounding personally identifiable information.

• Accuracy: It should maintain enough precision for informed decision-making

while balancing speed and portability.

• Ready to use: It should not require model training or configuration before

geocoding.

A comprehensive literature survey was conducted to understand the current landscape

and methodologies used for geocoding. This survey highlighted a variety of strategies

and algorithms for address matching. These methods were selectively adapted to align

with the goals of this project. Additionally, a novel method (compositional vectors)

was proposed.

A dataset consisting of 2,500 real delivery addresses was sourced from NZ Post. This

dataset was augmented by creating two additional addresses per source address, one



122 Conclusions

with realistic modifications and one with aggressive modifications. This produced an

evaluation dataset with 7,500 addresses of varying difficulty.

The evaluation dataset was used to assess the performance of the implemented algo-

rithms, and comparisons were made to alternative solutions available in the market.

The results demonstrated that the implemented methods exhibit different strengths

and are competitive with the best commercial solutions currently available.

Finally, the implemented methods were packaged into a Python library, which has

been made publicly available via PyPI. A user guide and demo website were also

developed to support the adoption and use of the package.
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Appendix

A Lookups

A.1 List of street types

ACCESS CREEK GREEN OAKS SQUARE

ACCESSWAY CRESCENT GROVE PADDOCK STATE HIGHWAY

ALLEY CREST GULLY PAKU STEEP

ANCHORAGE CUL HAVEN PARADE STEPS

APPROACH DALE HEAD PARK STRAIGHT

ARCADE DELL HEIGHTS PARKWAY STRAND

ARCH DEVIATION HIGHWAY PASS STREET

AVENUE DOWNS HILL PASSAGE TERRACE

BANK DRIVE ISLAND PATH TOWERS

BAY DUNE JUNCTION PLACE TRACK

BEACH ELM KEY PLAZA TRAIL

BELT END KNOB POINT TRAMWAY

BEND ENTRANCE LADDER PRIORS TREES

BLUFF ESPLANADE LANDING PROMENADE VALE

BOULEVARD ESTATE LANE QUADRANT VALLEY

BRAE EXPRESSWAY LEA QUAY VENUS

BRIARS FAIRWAY LEADER REEF VIEW

BRIDGE FALL LEIGH RESERVE VIEWS

BYPASS FARE LINE REST VILLAGE

CENTRE FARMS LINK RETREAT VILLAS

CHASE FEN LOOKOUT RIDGE VISTA

CIRCLE FERN LOOP RISE VUE

CIRCUIT FREEWAY MALL ROAD WALK

CIRCUS FLAT MEAD ROADS WATERS

CLAIM FLATS MEADOWS ROADWAY WAY

CLOSE GARDEN MEWS ROUTE WHARF

CORNER GARDENS MILE ROW WYND

COMMON GATE MOTORWAY SERVICE LANE

COURT GLADE MOTU SLOPE

COURTS GLEN MOUNT SPA

COVE GRANGE NEAVES SPUR
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A.2 List of Level Descriptions

BASEMENT LOWER GROUND FLOOR PODIUM

GROUND FLOOR MEZZANINE ROOFTOP

GROUND LVL OBSERVATION DECK SUB-BASEMENT

GROUND PARKING UPPER GROUND FLOOR

GROUND LEVEL PENTHOUSE

LOBBY PLATFORM

A.3 List of Dwelling Types

ANTENNA COTTAGE LOT SHOWROOM TOWNHOUSE

APARTMENT DUPLEX MAISONETTE SIGN UNIT

BLOCK FACTORY MARINE BERTH SITE VAULT

BOATSHED FLAT OFFICE STALL VILLA

BUILDING GARAGE PENTHOUSE STORE WARD

BUNGALOW HALL REAR STRATA UNIT WAREHOUSE

CAGE HOUSE RESERVE STUDIO WORKSHOP

CARPARK KIOSK ROOM SUBSTATION

CARSPACE LEASE SECTION SUITE

CLUB LOBBY SHED TENANCY

COOLROOM LOFT SHOP TOWER
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A.4 List of Street Abbreviations

ACCS ACCESS FAWY FAIRWAY PT POINT

ACCSWY ACCESSWAY FRMS FARMS PRIORS PRIORS

ALY ALLEY FEN FEN PROM PROMENADE

ANCG ANCHORAGE FWY FREEWAY QDRT QUADRANT

APP APPROACH FLT FLAT QY QUAY

ARC ARCADE FLTS FLATS RES RESERVE

AV AVENUE GDN GARDEN REST REST

AVE AVENUE GDNS GARDENS RTR RETREAT

BNK BANK GTE GATE RDGE RIDGE

BCH BEACH GLD GLADE RISE RISE

BND BEND GLN GLEN RD ROAD

BLF BLUFF GRG GRANGE RDS ROADS

BLVD BOULEVARD GRN GREEN RDWY ROADWAY

BR BRAE GRV GROVE RTE ROUTE

BRG BRIDGE GLY GULLY SVLN SERVICE LANE

BYP BYPASS HVN HAVEN SLP SLOPE

CTR CENTRE HTS HEIGHTS SPUR SPUR

CH CHASE HWY HIGHWAY SQ SQUARE

CIR CIRCLE HL HILL SH STATE HIGHWAY

CCT CIRCUIT IS ISLAND STEEP STEEP

CRCS CIRCUS JCT JUNCTION STPS STEPS

CLM CLAIM JNC JUNCTION STGT STRAIGHT

CL CLOSE LADR LADDER STRD STRAND

CNR CORNER LNDG LANDING ST STREET

CMN COMMON LEDR LEADER TCE TERRACE

CRT COURT LGH LEIGH TWRS TOWERS

CRTS COURTS LKT LOOKOUT TRK TRACK

CV COVE MDWS MEADOWS TRL TRAIL

CRK CREEK MWY MOTORWAY TMWY TRAMWAY

CR CRESCENT MOTU MOTU TRS TREES

CRES CRESCENT MT MOUNT VALE VALE

CRST CREST NVS NEAVES VLY VALLEY

DLE DALE OAKS OAKS VNUS VENUS

DEL DELL PADK PADDOCK VW VIEW

DVN DEVIATION PDE PARADE VWS VIEWS

DOWNS DOWNS PK PARK VLG VILLAGE

DR DRIVE PKWY PARKWAY VLLS VILLAS

DUNE DUNE PASS PASS VIS VISTA

ENT ENTRANCE PSGE PASSAGE WLK WALK

ESP ESPLANADE PTH PATH WATERS WATERS

EST ESTATE PL PLACE WHRF WHARF

EXP EXPRESSWAY PLZ PLAZA
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C Geocoding Services Code

C.1 Google

import googlemaps

api_key = os.environ["GOOGLE_API_KEY"]

gmaps = googlemaps.Client(key=api_key)

geocoded = [

gmaps.geocode(address, components={"country": "NZ"})

for address in addresses

]

C.2 Azure

from azure.core.credentials import AzureKeyCredential

from azure.maps.search import MapsSearchClient

credential = AzureKeyCredential(os.environ.get("AZURE_API_KEY"))

search_client = MapsSearchClient(

credential=credential,

)

geocoded = [

search_client.get_geocoding(

address_line=address,

country_region="NZ",

top=1

) for address in addresses

]
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C.3 AWS

import boto3

client = boto3.client(

"geo-places",

region_name="us-east-1",

aws_access_key_id="",

aws_secret_access_key="",

)

def gcode(address):

response = client.geocode(

QueryText=address,

MaxResults=1,

Key=os.environ["AWS_API_KEY"],

IntendedUse="SingleUse",

Filter={"IncludeCountries": ["NZ"]},

)

return response

geocoded = [gcode(address) for address in addresses]
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C.4 Mapbox

import mapbox

mapbox_token = os.environ.get("MAPBOX_TOKEN")

geocoder = mapbox.Geocoder(access_token=mapbox_token)

def mapbox_geocode(address):

response = geocoder.forward(

address,

country=["nz"],

limit=1).json()

return response

geocoded = [mapbox_geocode(address) for address in addresses]

C.5 Nominatim

from geopy.geocoders import Nominatim

geolocator = Nominatim(user_agent="nz_geocoder")

geocoded = [

geolocator.geocode(address, country_codes="NZ")

for address in addresses

]
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D Address Modifying Prompt

As part of an evaluation process for geocoding algorithms, I am testing how well

addresses can be matched to a reference database. To make a complete evaluation,

addresses with a variety of quality and matching difficulty are needed. I will provide

you with a list of 50 addresses. For each one of these input addresses, I need you to

make an address with realistic adjustments, and an address with aggressive adjust-

ments. The adjustments made should represent how a person may choose to write

down their address and may include the following:

• Typos, including deletions, additions, substitions, and transpositions

• Phonetic mistakes

• Abbreviations of areas and common words, e.g. street to st and auckland to akl

• Omittal of various fields within the address, e.g. including the city and not the

suburb, removing the postcode, etc.

• Any other modifications that are reasonable in the context of addresses

the realistically modified addresses should make a small amount of adjustments and

represent addresses that a human would realistically use, and the aggressively modified

addresses should apply more adjustments beyond what a human might typically use.

Provide only the modified addresses in your response, use one line per address pair

and separate realistic and aggressively modified addresses with a |.
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